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Abstract
This paper describes the configuration and evaluation of the 
scoring component of a system that learns ontological con-
cepts, properties and value sets from unconstrained text. The 
experiment reported in this paper sought to determine the 
optimum  combination  of  automatic  and  manual  tasks  in 
knowledge acquisition that maximizes the quality of knowl-
edge acquired. This experiment was a follow-up on our ear-
lier work where we sought to determine what quality of re-
sults could be expected from a fully automatic knowledge 
acquisition system.  We briefly describe the system architec-
ture, the experimental setup, results and evaluation. The pa-
per concludes with an extensive discussion of complexities 
of ontology acquisition, whether carried out by people or 
systems, and a program of work that addresses these com-
plexities.  

 Introduction  

Automatic  population  of  static  knowledge  resources 
(SKRs) holds promise for overcoming the so-called knowl-
edge bottleneck of language processing systems. Both the 
process  of  developing  such  capabilities  and  the  end  re-
sources  are of  great  interest  to our semantically-oriented 
NLP group,  particularly since  we have  two types of  en-
abling technologies that can be brought to bear: (1) large, 
deep, manually crafted SKRs (lexicon, ontology and fact 
repository)  from which  to  bootstrap  and  (2)  a  semantic 
analysis engine that interprets input text such that mean-
ings extracted from text,  rather  than  text  strings,  can be 
learned. 

The process of automatically enhancing the ontology in 
our environment, called XXXX (XXXX), is comprised of 
the following main steps:

1. Select words/concepts to be learned.
2. Compile a corpus.
3. Create  text  meaning  representations  (TMRs)  for 

the corpus, which are written an unambiguous, on-
tologically-grounded metalanguage and contain the 
results of word sense disambiguation, semantic de-
pendency determination and reference resolution.
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4. Extract candidate property-value pairs from TMRs.
5. Score each property-value pair for utility and confi-

dence.
6. Evaluate the learned knowledge.

To clarify what we mean by ontology (for a discussion 
of ontology classification and a review of automatic ontol-
ogy learning efforts see Biemann 2005), the XXXX ontol-
ogy is a hierarchically ordered inventory of concept frames 
in which the hierarchy reflects the  IS-A relation and each 
concept belonging to the OBJECT and EVENT subtrees is de-
scribed by an inventory of, on average, 16 properties, each 
of which can have multiple values. Property values are, by 
default, inherited from parents to children, though this in-
heritance can be overridden whenever necessary for differ-
entiating concepts.

Ideally, all of above-mentioned stages of ontology learn-
ing would be carried out fully automatically, with results 
mirroring those achieved by a person carrying out the same 
task: the system would independently determine which in-
formation could be learned at  a given time based on the 
current state of the SKRs and the content of the available 
corpora,  and  the  depth  and  complexity  of  information 
would grow as the knowledge core for bootstrapping grew 
(XXXX and XXXX). However, achieving both full auto-
mation and fully acceptable results from the outset is be-
yond the current state of the art, making the organization 
and prioritization of the work over time both centrally im-
portant and quite challenging. 

We have recently carried out two experiments that  re-
laxed different aspects of the ideal, fully automatic, config-
uration.  The first  experiment,  reported  in  XXXX,  chose 
high automation at all stages over quality of results – and, 
indeed, the results were not stellar. In that experiment, the 
engine sought to learn all necessary lexical and ontological 
information about unknown words, including the number 
of senses of the word and the best position for each sense 
in the ontological  hierarchy. Much effort  was devoted to 
automatic sense discrimination; much noise was created by 
errors in the automatically generated TMRs that served as 
input for learning (carrying out word sense disambiguation 
and semantic dependency determination to perfection fully 
automatically is arguably the central  long-term challenge 



for the field); and as a result it was difficult to evaluate the 
knowledge learned. 

In the experiment reported here, we focused on optimiz-
ing the latter stages of the overall process – the scoring of 
candidate ontological knowledge and its evaluation – and 
agreed  to  manually  supply certain  prerequisites,  such  as 
ensuring  that  the  TMRs that  served as  input  to  learning 
were correct and that they contained at least some knowl-
edge that was sufficiently relevant to learn. Of course, the 
overall long-term objective is to introduce more automa-
tion – and successfully deal with greater amounts of ensu-
ing noise – to different stages of the learning process, at-
tempting  to  always  optimize  human-computer  collabora-
tion in SKR compilation, with the balance of effort shifting 
over time toward the automatic component. 

To put this work in context, few, if any, extant ontologies 
are  rich  in  property  value  descriptions;  most  essentially 
represent  a  subsumption  hierarchy.  Accordingly,  as  dis-
cussed by Biemann 2005, most ontology learning pertains 
exclusively to learning IS-A hierarchies with the occasional 
inclusion of  meronymic (PART-OF)  relations.  XXXX (pp. 
30-36) provides an overview of past ontology learning ex-
periments, including those that go beyond the  IS-A hierar-
chy. The work that is closest in spirit to ours is that being 
pursued by James Allen’s group, who have recently begun 
a program of ontology learning using deep semantic analy-
sis. In Allen et al. 2011, they report on an experiment de-
signed to learn lexicon and ontology from glosses in Word-
Net. Their contribution, like ours, reflects as much an anal-
ysis of challenges as a report of results; but they, like us, 
come to the conclusion that this direction of work remains 
both necessary and potentially fruitful, despite those chal-
lenges.  

The next section of the paper describes the second ex-
periment mentioned above, and the final section discusses 
in  some  detail  lessons  learned  from this  pair  of  experi-
ments as well as the overall place of, and contribution to, 
AI of this program of study.

The Learning Experiment

Coverage.  This experiment addressed two words: vaccine  
and  coffee, which were manually determined to have one 
and three senses worthy of inclusion in the ontology, re-
spectively. The appropriate place in the ontological hierar-
chy for each new sense was also predetermined manually, 
as follows:

VACCINE is-a MEDICAL-PREPARATION  
COFFEE-FOODSTUFF  is-a PLANT-DERIVED-FOODSTUFF

COFFEE-CROP is-a CROP-PLANT

COFFEE-BEVERAGE is-a HOT-BEVERAGE

Each concept in the XXXX ontology is richly described by 

property values – an average of 16 per concept. A concept 
by  default  inherits  the  full  inventory  of  property  values 
from its parent, which is why its position in the hierarchy is 
of key importance from the point of view of economy of 
acquisition effort. The goal of this ontology learning exper-
iment was to modify at least some property values of the 
newly posited children such that each child differed from 
its  parent  (and  siblings)  in  correct,  distinguishing  ways. 
This  experimental  setup  was  actually  quite  close  to  the 
real-world scenario we seek to support: most of our exist-
ing concepts, although manually acquired, are not as well 
specified as  they  could be due  to  lack of  acquirer  time, 
meaning that they are not optimal  as defined by their in-
ventory of property-value pairs.

Corpus.  For each word of interest – vaccine and coffee  
– we complied a corpus of sentences, each of which con-
tained at least one description that might be of interest to 
the learner (e.g.,  Many people like coffee  gives no useful 
information about the meaning of coffee since one can like 
just about any object or event in the world). The  vaccine  
corpus contained 26 sentences and the  coffee  corpus,  58 
sentences. The size of the corpora was small and the con-
tent carefully selected because the experimental design in-
volved  manually  creating  gold-standard  TMRs  for  each 
sentence,  which  is  a  labor-intensive  process,  even  given 
that we benefited from the availability of a convenient tool 
environment, XXXX. For orientation, the TMR for the toy 
input Hot coffee bought in a cafe is delicious but expensive  
is  as  follows (values  of abstract  scalars are on the scale 
{0,1}; numerical suffixes on concepts indicate instances):

COFFEE-1
TEMPERATURE .8    
GUSTATORY-ATTRIBUTE 1   
COST .8
THEME-OF BUY-1

BUY-1
THEME COFFEE-1
LOCATION CAFE-1

CAFE-1
LOCATION-OF BUY-1

For  the  vaccine  texts, the  TMRs  contained  28  prop-
erty-value pairs,  18 of them unique; for the  coffee  texts 
there  were 138 property-value  pairs,  63 of  them unique. 
Since  only  one  sense  of  VACCINE was  posited,  all  vac-
cine-related property-value pairs  were tested  against  this 
sense.  By  contrast,  since  three  senses  of  coffee  were 
posited, each coffee-related property-value pair was tested 
against each posited sense of “coffee”: COFFEE-FOODSTUFF, 
COFFEE-CROP, COFFEEE-BEVERAGE. To put a finer point on 
it,  the TMRs for “coffee” texts contained an unspecified 
concept called  COFFEE, and it was necessary to automati-
cally determine which of the three actual senses was being 
described in each case. 

After  the  inventory  of  TMRs  was  prepared,  prop-
erty-value pairs were extracted from each frame headed by 



VACCINE or COFFEE. These served as input to the learner. A 
sampling  of  property-value  pairs  extracted  from  TMRs 
concerning “coffee” is shown in the first two columns of 
Table 1 (Columns 3 and 4 will be described later).

Table 1. A simplified rendering of the GUI used for manual eval-
uation of candidate property-value pairs.

 Property Value Score Status
THEME-OF INGEST 4.69 Keep
THEME-OF COMMERCE-EVENT 2.81 Keep
HAS-OBJECT-AS-
PART

ORGANIC-CHEMICAL-
COMPOUND

1.13 Keep

THEME-OF PREPARE .625 Edit
PART-OF-OBJECT CROP-PLANT .625 Delete
AMOUNT CUP .625 Keep

Scoring. The learner subjected each property-value pair, 
as applied to each candidate sense, to the following eight 
scoring functions, which were invented introspectively.

1.  Baseline  scorer.  All  property-value  pairs  receive  a 
score of 0.5 (on a scale of 0-1) except those belonging to a 
stop list, which are penalized to .35. The stop-list members 
primarily  represent  elements  of  TMR  that  reflect  text  
meaning  rather  than  ontological meaning.  For  example, 
modal frames indicate speaker attitudes and set frames in-
dicate plurality/cardinality,  none of which is relevant for 
the ontological description of concepts.  

2. Specific-instance penalty scorer. Information describ-
ing generic types of objects and events (Lions roar) is most 
useful for ontology supplementation, whereas information 
describing object/event  instances  (That lion is barking) is 
less desirable because it might be atypical or counterfac-
tual. Accordingly, property-value pairs describing specific 
instances are lightly penalized. 

3. Wrong domain for case-role penalty. Direct case roles 
(AGENT,  THEME,  etc.) apply to  EVENTs (i.e., their  DOMAIN 
is  EVENT)  whereas indirect case roles (AGENT-OF,  THEME-
OF, etc.) apply to OBJECTs. If the candidate property is sup-
posed to apply to an EVENT but the target concept to which 
it is being applied is an OBJECT, or vice versa, a penalty is 
issued. For example, if  [THEME:  NEST]  were being tested 
against  a  target  concept  meaning  a  type  of  BIRD,  there 
would be a penalty since BIRDs cannot have THEMEs. 

4.  “Corefer” scorer. COREFER is a  property indicating 
the ontological  type of the entity heading a TMR frame. 
For example, the following TMR description reflects the 
meaning of a text input like Coffee is a brown beverage: 

COFFEE   
      COLOR         brown
      COREFER     BEVERAGE

When  the  system attempts  to  determine  which  sense  of 
“coffee”  [COLOR:  BROWN]  applies  to,  it  checks to  see  if 
COFFEE-BEVERAGE, COFFEE-FOODSTUFF or COFFEE-CROP is 
a descendant of BEVERAGE. COFFEE-BEVERAGE is a descen-

dant of BEVERAGE whereas the other two are not. Accord-
ingly,  [COLOR:  BROWN]  as  applied  to  COFFEE-BEVERAGE 
receives a bonus, whereas [COLOR:  BROWN]  as applied to 
the other two senses receives a penalty. 

5. Higher Specification Scorer. Given a candidate prop-
erty-value pair, if the value  is an ontological descendant of 
the target concept’s initially recorded value (which is di-
rectly inherited from its parent), then a bonus is awarded. 
For example, if the initially recorded value of the property 
LOCATION is  PLACE,  and the candidate property-value pair 
is [LOCATION: FARM], then that property value will receive 
a  bonus  because  FARM is  an  ontological  descendant  of 
PLACE.  

6. Instance Count Scorer. The more times a given prop-
erty-value pair is attested in a corpus, the bigger the bonus 
that property-value receives as ontological knowledge (as 
applied to some sense). 

7.  Ontological  Depth  Scorer.  Property  values  that  oc-
cupy a “medium-depth” position in the ontology (between 
5 and 10 levels down from the root, ALL, for OBJECTS, and 
between  4  and  10  levels  down  for  EVENTS)  receive  a 
bonus; those near the root of the tree (4 levels down from 
the  root  for  OBJECTS;  3  levels  down  from  the  root  for 
EVENTS) receive a penalty; those very low in the tree (very 
specific)  have  no effect  on scoring.  The intuition is  that 
highly generic fillers will not be very useful in distinguish-
ing one concept from another, whereas highly specific ones 
might represent idiosyncrasies of the input text rather than 
ontologically valid generalizations. 

8.  Selectional Constraint  Scorer.  This scorer  applies a 
bonus  to  candidate  property  values  that  corroborate  (are 
equal to or in the subtree of) those inherited from the target 
concept’s parent, and it penalizes candidate property values 
that conflict with those inherited from the parent. There are 
two levels of penalty. A moderate penalty is issued if the 
candidate filler is not identical to or within the ontological 
subtree of the initial filler: e.g., if initial ontological speci-
fication includes [THEME: AUTOMOBILE] but the new infor-
mation  in  the  TMR includes  [THEME:  INGESTIBLE]  there 
will be a penalty because INGESTIBLE is neither identical to 
nor in the subtree of  AUTOMOBILE.   A large penalty is is-
sued if the above condition holds  and at least one of the 
originally specified ontological fillers is “broad” (near the 
ontological root), since broad fillers are expected to cover a 
wide variety of specific cases met with in text. For exam-
ple, if the initial ontological specification includes [THEME: 
PHYSICAL-OBJECT] but the new information in the TMR in-
cludes [THEME: MOTION-EVENT], then there will be a large 
penalty because of the violation of a very broad inherited 
constraint.  

Although the  baseline scorer  must be applied first,  all 
other scorers can be applied in any order. The actual scor-
ing  function  was  based  on  introspection  and  tweaked 
somewhat  during testing.  It  is  understood to be  prelimi-
nary, requiring additional evidence-based modification.

Based on output scores {0,1}, the learner assigned one 



of the following three statuses to each property-value pair 
as it was applied to each candidate sense of the root word:

Keep: a high-confidence vote that this property-value pair 
belongs to the candidate concept.
Edit: a high-confidence vote that this property-value pair 
is close to correct for the candidate concept but fails in one 
of two ways: either the value is an ontological sibling of 
the needed concept or it is up to two levels of subsumption 
away from the needed concept. The idea is that this knowl-
edge might be confident enough to be included in the on-
tology even without amendment (as in a fully automatic, 
lifelong learning system), but it would be better if a person 
– or further machine learning – would revisit it for further 
optimization. 
Delete: a  high-confidence  vote  that  the  given  prop-
erty-value pair does not belong to the candidate concept.

A GUI was created to permit users to view and edit the sys-
tem’s recommendations, as well as add property values, if 
desired, to create the gold standard (more on the definition 
of “gold standard” below). The basic contents of the GUI, 
mocked up for reasons of space, is shown in Table 1. 

Evaluation.  System evaluation introduced experiment-
motivated  enhancements  to  the  well-known measures  of 
precision and recall. 

Precision. Since two levels  of  correctness were delin-
eated – “keep” and “edit” – precision was calculated as fol-
lows: 

P = (#keep + (#edit x PENALTY)) / #suggested

where 
• #keep means “System vote: Keep or Edit ~ User vote: 

Keep”
• #edit means “System vote: Keep or Edit ~ User vote: 

Edit”
• PENALTY is a static value used to penalize precision 

for the property / fillers that were added to #edit 
• #suggested is the number of property-value pairs the 

system originally marked as Keep or Edit. 

For example, our targeted word sense  COFFEE-CROP con-
tained  12  distinct  property-value  pairs  that  the  system 
marked as Keep or Edit. Of these, 4 were marked by the 
user as Keep and none as Edit. The resulting precision was 
0.333. 

Recall. Recall  can be  defined  in  two ways, which we 
will refer to as basic recall (Rb) and total recall (Rt). 

Basic recall  (Rb) indicates how many property values 
were  learned of  the  number  of  property-value  pairs  that 
could have  been learned given the  corpus.  The formula, 
which  considers  the  Keep  and  Edit  statuses  of  prop-
erty-value pairs, is:

Rb = #userandsystem / #user

where #user means the number of property-value pairs that 

the user labeled as either Keep or Edit, and #userandsys-
tem indicates the number of property-value pairs that both 
the user and system labeled as Keep or Edit.  Continuing 
our  COFFEE-CROP example: the user labeled only 4 prop-
erty-value pairs as Keep or Edit, all of which were marked 
by the system as Keep or Edit as well. Thus Rb for the cor-
pus for this word sense was 1.000. This measure suggests 
how  well  the  system can  help  a  user  to  carry  out  sys-
tem-aided ontology development by suggesting candidate 
property-value pairs.

Total recall (Rt) includes a penalty for knowledge that 
should be in the gold standard but the system could not 
have learned given the input corpus (the knowledge was 
absent  from  the  texts).  This  is  calculated  using  prop-
erty-value  pairs  that  the  user  added by  hand  during  the 
process of reviewing system results.  To calculate Rt,  we 
need  one  additional  parameter:  #added,  which  indicates 
the number of property-value pairs the user added to the 
candidate concept. Rt is then defined as: 

Rt = #userandsystem / (#user + #added)

To conclude our COFFEE-CROP example, the user added one 
additional  property-value pair not  found in the corpus to 
the  candidate  ontological  frame.  Thus,  Rt  for  this  word 
sense was 0.800.

Finally, we can calculate the standard fmeasure score for 
both recall values:

Fb = 2 x ((P x R) / (P + R))
Ft = 2 x ((P x Rt) / (P + Rt))

Rt has an upper bound of Rb, and similarly Ft has an upper 
bound of Fb.

Table 2 indicates the precision, basic recall, total recall, 
and both fmeasures (basic and total) for each of the four 
word senses learned in this experiment. We interpret these 
results in the next section.

Table 2. The results of property-value learning.
P Rb Rt Fb Ft

COFFEE-
FOODSTUFF

0.294 0.625 0.555 0.400 0.384

COFFEE-
BEVERAGE

0.449 0.750 0.500 0.562 0.473

COFFEE-CROP 0.333 1.00 0.800 0.500 0.470
VACCINE 1.00 0.250 0.250 0.400 0.400

Interpretation of Results and Future Work

We did not expect the precision and recall results of the re-
ported experiment to be as low as they were: after all, we 
had intended to optimize learning results by hand selecting 
texts that contained useful property values, creating gold-
standard  TMRs,  deciding  how  many  senses  each  word 
would have, and selecting an ontological position for each 
candidate concept, thus optimizing its inherited inventory 



of property-value pairs. Given all of these prerequisites, the 
work was intended to focus narrowly on optimizing the au-
tomatic  scoring  function  for  candidate  knowledge  ele-
ments. We knew from the outset that the absolute scores 
would be of little interest since the experimental setup (like 
so many others) had little relation to any actual or envi-
sioned real-world task. However, the uniformly low quality 
of results led us to contemplate a larger – and, we would 
suggest – ultimately more important set of issues than orig-
inally anticipated. In fact, we have come to believe that the 
main contribution of this paper is precisely the analysis of 
the issues and problems inherent in this and other similar 
experiments.  We  begin  with  experiment-specific  lessons 
learned, then broaden the discussion to the basic scientific 
and methodological issues facing practitioners of lifelong 
learning by reading.

Modifying the Experimental Setup. During evaluation, 
we detected three aspects of experimental design that could 
improve the results of this or a similar experiment – again, 
focusing specifically on optimizing the scoring function.

1.  The  ontological  descriptions  for  the  concepts  that 
served as  parents  for  our new concepts  were  simply re-
trieved  from  the  standing  ontology  and  not  manually 
rechecked  before  the  experiment;  as  it  turned  out,  they 
were  actually  of  suboptimal  quality  – essentially,  under-
specified due to lack of acquirer time/attention. This led to 
scoring problems for all heuristics that compared the par-
ent’s value of a property with one attested in the learning 
corpus.  

2. Since we chose to supply the learner with gold-stan-
dard TMRs as  input,  and since  it  is  expensive  to  create 
gold-standard TMRs – even when supported by aspects of 
automatic analysis and a sophisticated acquisition environ-
ment – we agreed to learn from a limited corpus. The cor-
pus proved to be too small to provide sufficient evidence to 
optimize the scoring function. One option for a future ex-
periment would be to create gold-standard TMRs for rele-
vant  excerpts  of sentences rather than full sentences.  We 
estimate that  this  might  increase  fourfold  the  amount  of 
data that could be produced given a set amount of acquirer 
time. 

3.  We hypothesize that  scoring might be improved by 
merging several of the scorer functions related to the onto-
logical nature of candidate property values. There are two 
reasons for  this.  First,  psychological  studies have shown 
that people cannot manipulate large numbers of variables 
in  decision-making,  and  that  small  numbers  of  well-se-
lected ones tend to work better (Kahneman 2011), at least 
in routine cases. Since we are creating our scoring function 
using  human  introspection,  constraining  the  number  of 
property values should be beneficial. The second reason to 
merge several scorers is that some of the current scorers 
were not truly independent. They inadvertently overlapped 
with respect to some phenomena, imposing disproportion-

ate bonuses or penalties. For example, if a candidate prop-
erty  value  was  of  type  OBJECT or  EVENT,  the  baseline 
scorer penalized it for being high on the ontological tree by 
giving it a starting score of .35, then the ontological depth 
scorer penalized  it  again  for  the  same reason;  similarly, 
both  the  higher  specification  scorer and  the  selectional  
constraint scorer evaluated whether or not a property value 
corroborated or conflicted with the initially recorded onto-
logical property values – a calculation that could readily be 
merged into one scoring system. In sum, we hypothesize 
that it would be useful to merge several scorers relating to 
the  ontological  nature  of  candidate  property  values  and 
their relationship to their respective recorded property val-
ues existing before learning occurred. 

4. We could easily expand the coverage of some of the 
scorers to include additional relevant phenomena. For ex-
ample, the wrong domain for case-role scorer could be ex-
panded to cover non-case-role relations, such that the do-
main  for  any  relation  was  tested.  Similarly,  the  higher  
specification  and  selectional  constraint  scorers  (or  a 
merged variant of them, as suggested above), could be ap-
plied to scalar properties as well as relations: e.g., if a par-
ent is defined for [TEMPERATURE: 30 <> 90] and the corpus 
evidence suggests that the target concept’s  TEMPERATURE 
is 40 <> 80, then the latter is a higher specification of the 
former. 

Expanding This Experiment By Automatically Deriv-
ing Prerequisites. The most conspicuous aspect of the se-
lected experimental setup was the extent to which we per-
mitted the prerequisites for learning to be provided manu-
ally. This goes against our group’s overall research and de-
velopment  methodology,  which  strongly  prefers  –  even 
dictates – that we take responsibility for all aspects of text 
processing ourselves: preprocessing, syntactic analysis, se-
mantic analysis,  compilation of knowledge resources and 
development of user tools (XXXX). The reason for making 
prerequisite-oriented compromises in this experiment was 
the desire to evaluate, as cleanly as possible, one module of 
our overall system: the scoring mechanism. We expect that 
the next  iteration of  this experiment  will  have improved 
that sufficiently so that we can begin to iteratively replace 
manual efforts with automatic ones. 

The most important shift to automation involves the au-
tomatic generation of TMRs – a process that has been at 
the center of our group’s work for over 20 years. Clearly, 
automatically generated TMRs will not soon be of perfect 
quality  due  to  the  complexity  of  the  enterprise  and  the 
amount of static knowledge required to support it (one of 
the central motivations for machine learning of ontology!). 
However,  we  are  working  toward  endowing  the  system 
with the ability to  self-evaluate its results such that it can 
select high-confidence portions of TMRs as input to learn-
ing. Once we shift to automatically generated TMRs, the 
corpus need not longer be constrained in size or specially 
selected.  

Clearly, improving any aspect of text processing should 



improve overall learning results, but we can prioritize de-
velopment efforts based on the needs of the learner and our 
theory of scoring candidate knowledge, manifest  through 
the inventory of scorers – which represent the inventory of 
features we choose to target. For example, one of our scor-
ers – the specific-instance penalty scorer -- requires as in-
put the determination of whether a given bit of knowledge 
in text applies to a class (Lions roar) or an instance (This 
lion barks). Whereas for this experiment the generic/spe-
cific-instance distinction was made using light, text-based 
heuristics (e.g., “this X” is an instance),  in  actuality,  the 
generic  status of  an object  or  event  should be explicitly 
recorded in TMR, having been determined using a battery 
of heuristics that goes far beyond the presence or absence 
of  a  given  determiner.  The  difficulty  in  determining 
generic/specific status can readily be seen in the following 
dialog: -  Dogs eat cat food. - No they don’t, they eat dog  
food! - Ugh ugh, my dog will only eat cat food!

Some Big Issues.  Here, to our minds, is where the dis-
cussion becomes really important and relevant to the field 
as  a whole.  Our experiment,  like most,  was designed  to 
shield  us  from  excessive  complications  as  we  whittled 
away at one corner of a very large problem. However, the 
complications  so  doggedly  asserted  themselves  during 
evaluation that ignoring them would be untenable. Below 
we present brief discussions of complex issues that we be-
lieve must be addressed head-on by anyone pursuing auto-
matic  learning  of  deep  ontology  (i.e.,  ontology  that  in-
cludes properties and values) by reading.

1. Ontological hierarchy & inheritance. Most ontologies 
are  organized  as  subsumption  hierarchies,  with  concepts 
inheriting property-value pairs from their parents unless lo-
cally overridden: e.g., BLUEBIRD’s COLOR is blue, whereas 
the value of color of its parent,  BIRD, is a set of different 
colors.  Ontological inheritance causes many practical  ac-
quisition problems, be it carried out by a person or a sys-
tem. If acquisition can be carried out in an exclusively top-
down fashion – where perfecting the description of a child 
is  undertaken  only  after  its  parent  is  deemed  to  be  de-
scribed sufficiently precisely – then most problems of in-
heritance  can  be  avoided.  Realistically,  however,  strictly 
top-down acquisition is impossible to pursue. As a result, 
every time a modification to a property value is considered, 
the question arises of whether this modification should be 
carried out at locally or, instead, applied to the parent (or 
the grandparent...) and subsequently inherited in the nor-
mal way. For example, if a text says that bluebirds are blue, 
rather than editing the BLUEBIRD frame, the acquirer or sys-
tem should see if the parent is, by chance, a class of ALL-
BIRDS-THAT-ARE-BLUE.  This is a contrived example, but it 
makes the point:  acquisition should always take into ac-
count ontology as a whole and not be reduced to acquisi-
tion of information about a concept in isolation. This con-
sideration strongly influences control issues in the acquisi-
tion process. 

2. What is a gold-standard ontology frame? Any answer 

to this question would depend upon the demands of an ap-
plication. In principle, our  BLUEBIRD frame could contain 
all of the information in a specialist’s tome about bluebirds, 
including all of the scripts (complex events) that a bluebird 
participates in, its properties at all of its life stages, etc. If 
we cannot ever say that a concept description is finished, 
then how can we evaluate a learning experiment with re-
spect to a gold standard – what was considered “total re-
call” in the evaluation reported above?

3.  Generalizing over attested knowledge.  In the experi-
ment reported here, we did not attempt to merge attested 
property values into larger classes: e.g., if the learner had 
evidence that coffee was [THEME-OF: EXPORT] and [THEME-
OF: TRADE], it did not merge EXPORT and TRADE into their 
common parent,  COMMERCE-EVENT; doing so would have 
also implied that coffee was the THEME-OF IMPORT, PRICE-
FREEZE,  SUBSIDIZE and a number of  other  events,  which 
might or might not be true. Clearly, judicious merging of 
specific concepts into a common subtree is useful and nec-
essary, but the set of relevant merging heuristics remains to 
be developed and tested.  

4. Task-oriented evaluation. Isolated, non-real-world ex-
periments are useful, at most, for comparisons with similar 
experiments  but  say  little  about  the  potential  real-world 
contribution  of  a  theory,  approach  or  system.  Our  long-
term  program  envisages  starting  to  use  our  learning  by 
reading system in the near future to support system-aided 
manual  acquisition  of  static  knowledge  resources;  then, 
over time graduating first to human-aided automatic acqui-
sition  and,  finally,  to  fully  automatic  acquisition.  This 
means that, in the near term, we expect the system essen-
tially to reduce the time and effort needed for manual ac-
quisition by proposing to acquirers knowledge (extracted 
from a corpus) that is already recorded in the human-un-
derstandable ontological metalanguage. Using the interface 
similar to that illustrated in Table 1, users will approve of, 
edit or reject knowledge gathered from a corpus which, we 
hypothesize, will take much less time than manually read-
ing the corpus, determining how to record the knowledge 
using the formal metalanguage of the ontology, and actu-
ally recording it. This aspect of evaluation, which measures 
time saved, is much more cumbersome than the evaluation 
provided above, but will reflect real-world utility far better 
than any evaluation of machine learning in isolation, since 
we will anytime soon not expose our relatively high-qual-
ity ontology to unvetted machine learning results. 

The most difficult research problems do not lend them-
selves to the kind of regular, satisfying evaluations achiev-
able for more constrained problems, with the definition of 
“useful evaluation metric” presenting a quandary in itself 
(XXXX). Still, the problem of automatic acquisition of rich 
knowledge remains the single most important problem in 
the field, which justifies ongoing attempts at solving it.
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