

DEKADE: An Environment Supporting Development of NLP Systems

Jesse English and Sergei Nirenburg

Institute for Language and Information Technologies

University of Maryland, Baltimore County

jesse.english@umbc.edu, sergei@umbc.edu

Abstract

This paper describes ongoing work on the DEKADE

(Development, Evaluation, Knowledge Acquisition,

and Demonstration Environment) system and its

components, the DekadeAPI, the DekadeServer, and

the DekadeClient. DEKADE supports the

development and operation of the natural language

processing (NLP) system OntoSem, including its

processors and static knowledge resources as well as

applications that rely on OntoSem for their natural

language processing needs

1. Introduction

Automatic extraction of meaning from unstructured

natural language text is, in some sense, the core

capability underlying semantic computing. This paper

describes some aspects of our ongoing work on a set

of tools facilitating the development of a battery of

processing modules and knowledge resources that

together comprise the semantic analyzer called

OntoSem [15]. The complexity of the knowledge

involved in OntoSem processing, as well as the

manifold interaction of its various modules makes the

development and testing of the system impossible

without sophisticated efficiency-enhancing tools.

Such tools must facilitate comprehensive testing of

any modifications to the system’s code by examining

the results of several analyzer modules. In particular,

allowing the developers to adjust the parameters of the

execution at intermediate steps of text analysis (a

capability similar to a typical code debugging

interface) facilitates development of modules in

arbitrary order, which is a desirable feature. Similarly,

knowledge acquirers must be able to test the quality of

newly added knowledge (e.g., ontological concepts or

lexicon entries) by running the analyzer with the

augmented static knowledge resources.

The adequate set of tools for supporting knowledge-

based natural language processing must, of course,

include a variety of knowledge editors. Availability of

interactive editors for both the static knowledge

resources and the results of the various processing

modules (including the final output of OntoSem, text

meaning representations, or TMRs) is essential. A

good example of the utility of editing system results is

the production of “gold standard” TMRs by having

human users correct and augments the results

produced automatically by the system. Gold standard

TMRs have a number of uses in evaluating

development progress and quality of the results as well

as in creating a corpus of rich semantic representations

of text meaning that can be used to train a variety of

statistical models for semantic text analysis.

To be truly efficiency-enhancing, the interactive

knowledge acquisition facilities in the tool set must

facilitate automatic validation of the newly acquired

knowledge elements (verifying that they are both

syntactically and semantically sound), as well as allow

the user to see how the various static knowledge

resources interact.

Finally, the tool set must support the use of the

OntoSem analysis environment by users who are not

developers and those who want to incorporate

OntoSem in their application.

To address the above issues, we have developed

DEKADE, a Development, Evaluation, Knowledge

Acquisition, and Demonstration Environment of

OntoSem. DEKADE targets the developer, knowledge

acquirer, and researcher requirements in a user-

friendly, cross-platform, client-server solution.

2. OntoSem

OntoSem (the implementation of the theory of

Ontological Semantics) is a text-processing

environment that takes as input unrestricted raw text

and carries out preprocessing, morphological analysis,

syntactic analysis, and semantic analysis, with the

results of semantic analysis represented as formal text-

meaning representations that can then be used as the

basis for many applications. TMRs have been used as

the substrate for question-answering (e.g., [4]),

machine translation (e.g., [3]) and knowledge

extraction, and were also used as the basis for

reasoning in the question-answering system AQUA,

where they supplied knowledge to showcase temporal

reasoning capabilities of the reasoning system JTP [8].

Text analysis relies on the following static knowledge

resources:

• The OntoSem language-independent ontology,

which currently contains around 8,500 concepts,

each of which is described by an average of 16

properties. The ontology is populated by concepts

that we expect to be relevant cross-linguistically.

The current experiment was run on a subset of the

ontology containing about 6,000 concepts.

• An OntoSem lexicon whose entries contain

syntactic and semantic information (linked

through variables) as well as calls for procedural

semantic routines when necessary. The current

English lexicon contains approximately 30,000

senses, including most closed-class items and

many of the most frequent and polysemous verbs,

as selected through corpus analysis. The base

lexicon is expanded at runtime using an inventory

of lexical (e.g., derivational-morphological) rules.

• An onomasticon, or lexicon of proper names,

which contains approximately 350,000 entries.

• A fact repository, which contains “remembered

instances” of ontological concepts. The fact

repository is not used in the current experiment

but will provide valuable semantically-annotated

context information for future experiments.

• The OntoSem syntactic-semantic analyzer, which

performs preprocessing (tokenization, named-

entity and acronym recognition, etc.),

morphological, syntactic and semantic analysis,

and the creation of TMRs.

• The TMR language, which is the metalanguage

for representing text meaning (a converter was

developed between this custom language and

OWL, see [10]).

OntoSem knowledge resources have been acquired by

trained acquirers using a broad variety of efficiency-

enhancing tools – graphical editors, enhanced search

facilities, capabilities of automatically acquiring

knowledge for classes of entities on the basis of

manually acquired knowledge for a single

representative of the class, etc.

3. Related Work

A large number of tools have been developed in the

field of NLP over the years, many of them devoted to

raising the efficiency of knowledge acquisition [e.g. 1,

12, 9, 13, 6, to name a few systems]. In this paper, we

will briefly review a small subset of such tools

selected from among those whose goals, coverage or

architecture has similarities with DEKADE.

The core purpose of FrameNet [1] is to facilitate

semantic annotation of text and lexicon. The tool used

to support this was originally a dynamic web

environment. Using Perl/CGI, the interface was

created by gluing together off-the-shelf software used

to communicate with the data structure of FrameNet’s

frames. Later, an API was developed [2], along with a

series of desktop tools, which were combined to make

for a more intuitive user platform. In contrast with

DEKADE, the FrameNet tools do not need to support

the development of an automatic semantic analyzer

and therefore does not need to conform to the latter’s

specifications.

ConceptNet [12] is a toolkit supporting the

applications of topic gisting, text summarization,

affect-sensing and some others and associated with a

“commonsense knowledge base” that uses an

ontological metalanguage that can be characterized as

constrained English. The data set ConceptNet was

created on the Open Mind Common Sense Project

[17], a project where non-expert volunteers from

across the web were asked to provide common-sense

data. ConceptNet is backed by an NLP system, which

is used to provide greater flexibility to the researcher

using the available knowledge base by allowing access

to a variety of commonsense NL functions. Unlike

DEKADE, ConceptNet does not aim to provide tools

for the knowledge acquirer (the knowledge comes

from the Open Mind Common Sense Project);

however, similar to DEKADE, ConceptNet makes the

use of its NL tools easy for the researcher.

The Annotation Graph Toolkit (AGT) [13] provides a

similar service as FrameNet, but with a different

clientele in mind. AGT specifically targets annotation

of time-series data, and provides an API for

constructing tools that facilitate the construction of

interfaces (using IDL [20]). AGT’s aim is primarily to

facilitate the knowledge acquisition process, and is

flexible enough to allow the end-user to customize the

interface. Similarly, DEKADE’s knowledge modeling

software, backed by a strong API, allows for flexible

interface construction, if the standard interface does

not fit the application.

Protégé [9] is an ontology development toolkit whose

general methodology and design are closest to that of

DEKADE. The Protégé system has been developed

on the Java platform, with an open API to allow for

easily created custom plug-ins to their tabbed

environment. Protégé facilitates the knowledge

acquisition process by supporting a method of

validation within the framework of the interface. The

API allows for the data acquired to be easily accessed

in a platform-independent manner. Unlike DEKADE,

Protégé does not directly support any NL system;

instead Protégé’s primary goal is as an ontology

development platform, which NL researchers can then

plug into.

The GATE environment [5, 6] focuses on streamlining

the entire process of creating a NL system; it provides

extensible tools and interfaces that facilitate the

developer’s task of crafting a language-based system

from a variety of available resources. Linking in with

resources such as WordNet [14], and Protégé, GATE

allows the knowledge acquirer to define and specify

various language resources such as lexicons and

ontologies. An open API allows the researcher to

access these tools and integrate them into an existing

project, or construct a new one. GATE also integrates

various machine-learning algorithms (via WEKA

[19]), as well various evaluation-oriented algorithms.

Similar in scope to the GATE project, DEKADE aims

to facilitate the tasks of the developer, knowledge

acquirer, and researcher by providing an open

framework API; however, DEKADE’s focus is

explicitly for the OntoSem environment, allowing the

modification of even the most fundamental data-

access methods. The tools suite for the developer and

knowledge acquirer have been constructed with

OntoSem in mind, and are then made available in a

platform-independent way for the researcher.

4. Prior Work: Existing Tools for

OntoSem

OntoSem has been under development for over 20

years. The last version of the core semantic analysis

algorithms was developed in 1996. Since then a

variety of tools have been constructed to assist in its

development and in the acquisition of its static

knowledge resources. Prior to the DEKADE system,

using OntoSem for outside research required an in-

depth, developer’s view of the various modules and

data repositories; thus, to obtain a full semantic

analysis of a sentence one had to run scripts and

programs written in Perl, C, C++, CLISP, and Java.

Understanding the output meant having an intimate

understanding of the TMRs produced, as well as the

inner workings of the ontology and lexicon.

An early toolset designed specifically for OntoSem

was KBAE (Knowledge Base Acquisition Editor).

KBAE was designed as a web-based interface for

ontology acquisition only (it did not support any other

knowledge acquisition, nor did it support the

development of OntoSem’s processors, or semi-

automatic production of TMRs). KBAE did offer a

variety of useful features for ontology acquisition,

most notably a very robust validation processor (a

system that verified that the knowledge entered was

not only syntactically correct, but also semantically

correct given the current state of the knowledge).

KBAE did have drawbacks: the data structure

supported by KBAE was not the same as the one

supported by OntoSem, leading to an inconvenient

need to run a script after ontology acquisition in order

to convert data formats to a standard representation.

Further, KBAE limited certain aspects of acquisition

(for example, reification of properties was not

supported). Finally, the validator used by KBAE to

guarantee the quality of knowledge acquisition was

legacy software, making it considerably difficult to

maintain or update.

In an attempt to address these drawbacks, as well as to

introduce lexicon editing and support for human

augmentation of automatic analyzer functions, the first

implementation of DEKADE was constructed. This

version, also a web-based application, was constructed

using JSP/Java technologies as well as SQL for data

storage solutions. At that time DEKADE supported an

ontology browser (an editor on par with KBAE was

never achieved), a lexicon editor (with fundamental UI

aspects, as well as validation), and most notably an

environment for processing a text through OntoSem.

This environment allowed the user to enter a text, and

run each of the four major stages of textual analysis

(preprocessing, syntactic, semantic,

pragmatic/discourse), with an option of halting after

each one for the user to inspect the intermediary

output and adjust it if necessary. This feature was a

significant asset, allowing the developer access to a

convenient test-bench for the analyzer, and allowing

the knowledge acquirer to quickly see how tweaking

the static knowledge affected the final analysis. Each

stage of the output was supported by a Java applet,

allowing for a rich editing interface.

However, this first version of DEKADE also had its

drawbacks: network lag, inconsistent HTML

rendering, and security were of major concerns to

users. In addition, the ontology editor was still not up

to par with existing resources, and there was a

disconnect between the data stored by the DEKADE

system, and the data used by OntoSem (at the time

OntoSem did not access the database for its static

knowledge resources, so updates to the flat files from

the database had to be periodically run to keep the

system in sync).

5. DEKADE Today

These problems led to the decision to create a new,

robust, fully functional, integrated toolset. The current

version of DEKADE abandoned the web interface for

a custom, client-server architecture, built around an

API designed to have uniform access to all of

OntoSem’s modules and static knowledge.

The initial task, and indeed the primary motivation to

rebuild DEKADE from scratch, was to develop an

open, and powerful, API. DekadeAPI, written in Java,

is an extensible library that supports single function

calls to access any of OntoSem’s modules, as well as

simple, yet robust, queries to the static knowledge

resources. To improve the efficiency and coverage of

these access methods, high-level Java objects have

been created as wrapper classes to parse the results

and present them to the user in an intuitive, easily

accessible manner.

To further enhance the functionality of these methods,

each was extended so that it is now possible to call it

across an open-socket network connection, allowing

the DekadeAPI to be usable by any user with an

Internet connection. With this functionality available,

it was time to construct an interface layer between the

existing toolset and the user. The interface had to

support the demands of three types of user: developer,

knowledge acquirer, and researcher (who uses

OntoSem as a tool), just as the DekadeAPI does.

Built on Java/Swing technology, the interface’s parent

UI frame handles securing the connection between

itself (the DekadeClient), and the server application

(the DekadeServer), and populates itself with a series

of tabbed panes found in the application’s root drag-

and-drop folder, registering the browsing capabilities

of each panel with the others. The interface was

developed to support custom user panes that simply

append to the interface and integrate with the existing

tools. Using standard Java/Swing libraries, and custom

DekadeAPI GUI extensions, researchers can easily

(a) (b)

(c)

Figure 1: OntoSem Stepped Analysis Interface

populate a panel with custom-built or existing

DEKADE widgets, and use them for two-way

communication with OntoSem.

A key component, and a true improvement over many

existing interfaces, is the interconnection between the

various editors and browsers. In the new DEKADE

environment, a knowledge acquirer can begin work on

a lexicon entry, and in a single click inspect the

corresponding ontological entry, and then swiftly

return to the lexicon entry. The developer can also

easily inspect the details of the various mappings to

static knowledge made by any of the OntoSem

processing modules to assist in the testing and

debugging process of OntoSem.

The current standard version of the DekadeClient

environment is supplied with the interfaces: to support

OntoSem Stepped Analysis, Lexicon

Browsing/Editing, Ontology Browsing/Editing, and

Fact Repository Browsing/Editing.

5.1. OntoSem Stepped Analysis Interface

The OntoSem Stepped Analysis interface supports

much the same functionality as the web-based

DEKADE did, but with a higher level of

interconnectivity and stability. The developer can

enter text and then halt the analysis process at each of

the four levels of analysis as required to inspect and, if

necessary, modify the results. The interface supports

three distinct stage editors, one for the preprocessor,

(Fig. 1 (a)), one for the syntactic analyzer (Fig. 1 (b))

and one for the semantic and pragmatic/discourse

analyzers (Fig. 1 (c)).

The preprocessor and syntax editor stages are

integrated with the lexicon editor (see section 5.2.),

and the semantic and pragmatic/discourse editor is

integrated with both the lexicon editor and the

ontology editor (see section 5.3.). The stepped analysis

capability allows the developer to see how changes in

the analyzers and static knowledge affect the TMRs

and supports the semi-automatic production of “gold

(a) (b)

(c)

Figure 2: Static Knowledge Browsing/Editing Interfaces

standard” TMRs for evaluation and other purposes.

5.2. Lexicon Browser/Editor

The Lexicon Browser/Editor allows the knowledge

acquirer to look up existing lexical entries, as well as

their synonyms and hyponyms, to edit these entries, or

to create new ones (Fig. 2 (a)). The editor supports a

validation step, insuring that the knowledge entered is

both syntactically and semantically correct. The

updated information is propagated through the

DekadeAPI to OntoSem’s database, making available

to the analyzer modules. The interface is integrated

with the ontology editor, allowing the acquirer to see

how the lexical entries relate to their ontological

counterparts.

5.3. Ontology Browser/Editor

The Ontology Browser/Editor provides much the same

functionality as the lexicon editor, but is targeted at

the ontology, an inherently tree-like structure (Fig. 2

(b)). Navigation is done by either navigating a tree

view of the ontology, or by keyword lookup. Users

can browse, edit, or create ontological entries, and any

updates are immediately accessible to the analyzer.

The interface facilitates manual acquisition through a

variety of ergonomic features, centered around the

goal of allowing the user to make as few mouse clicks

or type as few characters as possible. The interface

also supports validation of the edits made, and is

tightly integrated with both the lexicon interface, and

the fact repository interface (see section 5.4.).

5.4. Fact Repository Browser/Editor

The Fact Repository Browser/Editor allows the

researcher to easily navigate the knowledge

automatically created by OntoSem and made

persistent in the fact repository, a knowledge base

containing remembered instances of ontological

concepts and other meaning elements extracted by

OntoSem from texts and filtered on the basis of topic

relevance. The interface allows manual enhancements

to the automatically generated fact repository entries

(Fig. 2 (c)). The editor supports ontological

validation, and the browser is tightly integrated to the

ontology for easy cross-reference between fact

repository elements and ontological concepts of which

these are instances.

6. Ongoing Work

The DEKADE system is ever changing to fit both new

developments in OntoSem, as well as the requests of

the developers, knowledge acquirers, and other users.

Thus, at the time of writing the following lines of

system enhancement are being pursued.

• An interface overhaul is in the works, to

support the new model of static knowledge

storage and access that relies on the Postgres

database system.

• The validation system for each static

knowledge acquisition interface is being

reworked for improved coverage, efficiency

and stability.

• The architecture of the extensible Swing

components specific to DEKADE is being

cleaned up to make developing new custom

panels easier for the researcher.

• Default browser/editor interfaces for some of

the auxiliary static knowledge resources of

OntoSem are being created (these include

such knowledge bases as the onomasticon, a

lexicon of proper names).

• Some of the Stepped Analysis interfaces are

being retuned for increased usability by the

developer: more tight integration with the

knowledge browsers, as well as improved

editors for the production of “golden”

TMRs.
• A fully integrated cross-resource search

feature is being developed, which will allow

the knowledge acquirer to query the full

contents of the static knowledge at the same

time.

7. Applications

Since its inception, the DEKADE system (including

the DekadeAPI), has been used as a tool for several

lines of research, both inside and outside the ILIT lab

where DEKADE and OntoSem are currently

developed. On the basic science side, the DEKADE

system has supported a series of learning experiments,

including learning ontological concepts and their

places in the ontology through open corpus NLP (the

web) [7], as well as learning and validating ontological

attribute values through statistical methods over an

open corpus (the web) [16].

With respect to practical applications, DEKADE has

been successfully used in the SemNews system [10,

11] (Fig. 3), a semantic web annotation project,

cataloguing TMR-level annotations of RSS news feeds

created by OntoSem. The system uses OntoSem as its

backbone NLP system, and OntoSem’s static

knowledge resources as a default knowledge base.

Another application for which OntoSem provided the

basis and DEKADE the environment is EBIDS [18],

an NLP-based social engineering email detection

system. In EBIDS OntoSem is used through DEKADE

to semantically analyze incoming e-mail messages and

identify those of them that can be social engineering

(“phishing”) threats.

8. Evaluation

Evaluating a toolset is a significantly different task

compared to evaluating more quantitative research. In

the case of a toolset whose goal is to improve the

efficiency of developing, testing and operating a

system, we can evaluate its performance

independently for each of these tasks.

To evaluate its usability to the developer, we can

judge whether any usability has been added that was

not available (in a practical sense) before, and whether

any usability that was previously available has been

significantly improved. The DEKADE system does

allow for the developer to create gold standard TMRs

in a way that is significantly easier than previous

methods, as well, the system helps to expedite the

process of testing and debugging by allowing the user

to step through the main processes of the analysis, and

adjust the interim outputs as needed.

To evaluate the benefit to the knowledge acquirer, we

can test to see that time and effort is being saved on

development. It is evident that this is the case with

DEKADE: the knowledge acquirer has an array of

tools that allow for efficient browsing, editing and

validation. Each of the major static knowledge

resources is available to the acquirer through intuitive

interfaces, which are integrated together to improve

the overall usage of the system. An acquirer can

quickly reference existing knowledge, as well as have

any changes they make validated both syntactically

and semantically.

To evaluate the usefulness to the researcher, we can

look for any added benefit in connectivity that did not

exist before. Prior to the inception of the DEKADE

system, performing research using the OntoSem

system involved having an intimate knowledge of its

processors, and static knowledge resources; the

DEKADE system allows a researcher to use OntoSem

easily and efficiently as a tool, without the burden of

learning its software. As shown in section 7 above,

this benefit has been realized in several research

projects to date.

It is clear from the above discussion that we did not

carry out extensive formal user studies to measure

efficiency improvements in various tasks when

DEKADE was used. Indeed, no funding was so far

made available for that purpose in our project. The

utility of the tool has been demonstrated simply by its

eager adoption by its intended users.

Figure 3: SemNews Interface

9. Conclusion

In this paper, we have motivated the need to create a

full-featured toolset to support an NLP system, by

describing the needs of the three sets of users of such a

system: the system developer, static knowledge

acquirer, and researcher. We have presented the

DEKADE system, an integrated toolset solution for

this need in the framework of the OntoSem natural

language processor. We have described the various

functionalities of the DEKADE system, and its

supported interfaces and briefly mentioned several

outside applications of DEKADE and OntoSem.

10. References

[1] Baker, C., C. Fillmore, J. Low. The Berkeley FrameNet

Project. In Proceedings of COLING-ACL. Montreal,

Canada. 1998.

[2] Baker, C., H. Sato. The FrameNet Data and Software.

Poster and Demonstration at Association for Computational

Linguistics, Sapporo, Japan. 2003.

[3] Beale, S., S. Nirenburg, K. Mahesh. Semantic Analysis

in the Mikrokosmos Machine Translation Project. In

Proceedings of the 2nd Symposium on Natural Language

Processing, pp. 297-307, 1995.

[4] Beale, S., B. Lavoie, M. McShane, S. Nirenburg, T.

Korelsky. Question Answering Using Ontological

Semantics. In Proceedings of ACL-2004 Workshop on Text

Meaning and Interpretation. Barcelona, Spain. 2004.

[5] Bontcheva, K., V. Tablan, D. Maynard, H. Cunningham.

Evolving GATE to Meet New Challenges in Language

Engineering. Natural Language Learning 10 (3/4). (pp. 349-

373). 2004.

[6] Cunningham, H., D. Maynard, K. Bontcheva, V. Tablan.

GATE: An Architecture for Development of Robust HLT

Applications. In Proceedings of the 40
th

 Anniversary

Meeting of the Association for Computational Linguistics

(ACL02). Philadelphia, PA. 2002.

[7] English, J., S. Nirenburg. Ontology Learning from Text

Using Automatic Ontolgical-Semantic Text Annotation and

the Web as the Corpus. Proceedings of the AAAI 2007

Spring Symposium Series on Machine Reading, March

2007.

[8] Fikes, R., J. Jenkins, G. Frank. JTP: A System

Architecture and Component Library for Hybrid Reasoning.

Technical Report KSL-03-01, Knowledge Systems

Laboratory, Stanford University, Stanford, CA, USA, 2003.

[9] Gennar, J., et al. The Evolution of Protege: An

Environment for Knowledge-Based Systems Development.

International Journal of Human-Computer Studies, Volume

58, Issue 1. pp. 89-123. January, 2003.

[10] Java, A., et al. SemNews: A Semantic News

Framework. In Proceedings of the Twenty-First National

Conference on Artificial Intelligence (AAAI-06). 2006.

[11] Java, A., et al. Using a Natural Language

Understanding System to Generate Semantic Web

Content. Submitted to the International Journal on Semantic

Web and Information Systems (IJSWIS).

[12] Liu, H., P. Singh. ConceptNet: A Practical

Commonsense Reasoning Toolkit. BT Technology Journal,

To Appear. Volume 22, forthcoming issue. Kluwer

Academic Publishers. 2004.

[13] Maed, K., et al. The Annotation Graph Toolkit. In

Proceedings of the 1st International Conference on Human

Language Technology Research. pp. 1-6. San Diego,

California. 2006.

[14] Miller, G., R. Beckwith, C. Fellbaum, D. Gross, K.

Miller. Introduction to WordNet: An On-Line Lexical

Database. International Journal of Lexicography. (pp. 235-

244). 1990.

[15] Nirenburg, S., V. Raskin. Ontological Semantics.

SERIES: Language, Speech, and Communication, MIT

Press, 2004.

[16] Nirenburg, S., D. Dimitroff, J. English, C. Pfeifer.

Three Experiments on Mining the Web for Ontology and

Lexicon Learning. Submitted to the 13th International

Conference on Knowledge Discovery and Data Mining

(KDD-07).

[17] Singh, P., et al. Open Mind Common Sense:

Knowledge acquisition from the general public. In Robert

Meersman & Zahir Tari (Eds.), Lecture Notes in Computer

Science: Vol. 2519. On the Move to Meaningful Internet

Systems 2002: DOA/CoopIS/ODBASE 2002 (pp. 1223-

1237). Heidelberg: Springer-Verlag. 2002.

[18] Stone, A. EBIDS-SENLP: A System to Detect Social

Engineering Email Using Natural Language Processing.

Unpublished Master’s Thesis, University of Maryland

Baltimore County. 2007.

[19] Witten, I., E. Frank. Data Mining: Practical machine

learning tools and techniques. 2
nd

 Edition, Morgan

Kaufmann. San Francisco. 2005.

[20] http://www.ittvis.com/idl/

