
CORE: Coordinated Relocation of Sink Nodes in Wireless Sensor Networks

Jesse English, Michael Wiacek and Mohamed Younis

Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County

 (jesse.english, mw, younis@umbc.edu)

Abstract – In wireless Sensor Networks (WSNs), collected data

are routed to multiple gateway nodes for processing. Based on the

gathered reports, the gateways may also work collaboratively on a

set of actions to serve application-level requirements or to better

manage the resource-constrained WSN. Some of these actions

involve the relocation of some gateways. In this paper, we argue

that changing the position of a gateway cannot be pursued without

the consideration of the impact on inter-gateway connectivity. We

present an efficient algorithm for Coordinated Relocation of

gateways (CORE). CORE strives to maintain communication

paths among gateways while repositioning individual gateways to

better manage the sensors in their vicinity. Simulation results have

demonstrated the effectiveness of CORE and its positive effect on

both network longevity and node coverage.

1. Introduction

Wireless sensor networks (WSNs) have numerous

applications in a variety of disciplines, both military and

civilian [1][2]. The ability to remotely measure ambient

conditions and track dynamic targets/events can be

invaluable; especially in harsh environments where human

intervention is risky or infeasible. Sensors are usually

battery-operated and have a limited transmission range and

onboard processing capacity. Such constraints have

motivated lots of research on effective management strategies

of WSNs that trade off resources, data fidelity, latency, and

coverage so that the network can stay functional for the

longest duration.

A typical WSN architecture involves large numbers of

sensor nodes that report their measurements to locally

deployed data collection centers; often referred to as sink or

gateway nodes. Gateways are usually more capable in terms

of their energy supply, radio range and computational

resources. In many applications, gateways coordinate among

themselves and even move around to serve the application.

For example, in a disaster management setup multiple robots

may be deployed to collect in-situ sensor data, analyze such

data and collaboratively perform a rescue mission. Another

example is the use of rovers on planetary and lunar surfaces.

By their very nature, WSNs should be both ad-hoc and

scalable. Physical deployment of a WSN should not have to

be planned; instead nodes should be capable of being

dropped in an area, and self-organizing. To support

scalability, sensors are often grouped into clusters; each is led

by a gateway node. Within a cluster, sensors reports are

forwarded over multiple hops to the respective gateway node,

which processes the data and then deliberates with the other

gateways on the right course of actions. Therefore, a gateway

node should not only reach the sensors in its cluster but also

maintain communication channels to other gateways.

The location of the gateway can be very influential to the

network performance. For example, routing data to a gateway

that is distant from the source sensors usually involves

numerous relaying nodes and thus increases the aggregate

delay and energy consumption and risks a packet loss due to

link errors. In addition, ill-placed gateway nodes may cause

some of them to be isolated from the rest and just prevent

them from conducting the level of coordination required by

the application. Gateway relocation has been shown to be an

effective optimization strategy that boosts network longevity,

timeliness and reliability [3][4]. However, most of the

published schemes consider only a single gateway scenario.

We argue that limiting the scope of the analysis to the intra-

cluster network can cause network partitioning and diminish

the potential of inter-gateway coordination.

In this paper we present CORE; an algorithm for

Coordinated Relocation of gateway nodes. CORE considers

the inter-cluster implications of a gateway repositioning and

derives the necessary conditions for approving a gateway

move. Even if the motive for a gateway’s relocation may be

local to its cluster, the global effect of such a change in

position is categorized and the appropriate actions are

performed. In case a strongly connected inter-gateway

topology can be achieved, CORE allows the repositioning.

To handle the possibility of creating a partitioned inter-

gateway topology, CORE pursues novel heuristics that

trigger the relocation of multiple gateways in order to

improve the operation within individual clusters. To the best

of our knowledge, the problem of coordinated repositioning

of multiple gateway nodes in WSNs has not been addressed

in the literature.

This paper is organized as follows. Section 2 reviews

related work in the literature. We describe the system model

and state our assumptions. In Section 3, we describe the

problem and enumerate a variety of scenarios that can exist

when moving sink nodes in a multi-cluster environment. In

Section 4, we discuss the CORE algorithm in details.

Validation results are presented in Section 5. Finally, Section

6 concludes the paper.

2. Related Work

Base-station (gateway) repositioning has been investigated in

the context of wireless local area networks and cellular

infrastructure [5]. The base stations, in these systems are

stationary in nature and are placed in order to achieve

coverage of an area or a building using a minimal number of

base stations. Another related work is reported in [6]. The

considered model is to use a gateway node as a direct router

for a group of mobile nodes that would be otherwise

unreachable due to topological reasons such as blockages.

The problem addressed is to find the optimal place for the

gateway node to best serve the group in terms of latency and

throughput. The pursed approach is to move the gateway to

the weighted geographic centroid of the group by considering

the location and traffic generated by nodes regardless the

established routes. The approach of [3] follows similar

methodology but it is path-based. They argue that it is not

possible to optimally place the gateway without considering

the network topology and inter-node links. None of these

efforts addressed the collaborative relocation of multiple

inter-connected gateways.

Optimal placement of gateway nodes has been studied in

[7][8][9][10]. The scope of [7][8] is limited to a single

gateway node. On the other hand, the approach of [9] strives

to maximize the data flow in the network by carefully

positioning multiple gateway nodes. To counter the NP-

complete nature of the placement problem [8], the authors

proposed two different approximation algorithms. The aim of

[10] is to extend the network lifetime by distributing the load

among the deployed sensors. An integer linear programming

formulation was proposed to promote fairness among sensor

nodes in terms of data flow. However, this type of research

considers only static metrics and is applied at the time of

network setup. We are not aware of any work that addresses

inter-gateway networking issues while repositioning the

individual gateways. Currently we are extending CORE to

handle inter-cluster communication via relay sensors.

3. System Model

We assume that during the network bootstrapping phase the

gateways will perform node discovery to establish contact

with the largest number of deployed sensors [11]. The

gateways then divide the discovered sensor nodes among

them, forming clusters. Our approach is independent from the

clustering criteria which may be load balancing,

communication range, etc. [12]. A gateway is responsible for

managing the sensors in its clusters. A sensor node is capable

of communicating with the gateway of its cluster either

directly or over a multi-hop path. Nodes that are incapable of

reaching any gateway are considered orphaned.

A gateway node is assumed to have motion capabilities,

e.g a rover. We assume that gateways understand the layout

of their own clusters in relative terms at least. We also

assume that a gateway node has initial contact with all other

gateways in the network. Our algorithm will maintain this

contact, which will ensure that gateway nodes (through inter-

gateway communication) will be able to build a global view

of the entire network by sharing local views of clusters.

Gateway nodes do not need to be in direct transmission range

of all other gateways in the network, but a path must be

available that links each gateway to another. Fig. 1 shows a

sample valid network setup.

4. Problem Description

As indicated earlier, gateway relocation is an effective

scheme for optimizing the network operation within the

individual cluster. The main issues are when it makes sense

to move the gateway, where to place it and how to handle the

packet traffic while the gateway is on the move [3].

However, the relocation problem is substantially

compounded when a network consists of multiple clusters. A

gateway node cannot choose to arbitrarily wander around its

cluster to enhance the intra-cluster network operation (local

gain) without considering the potential impact this could

inflict on its ability to maintain communication with the

gateway nodes of other clusters (global effect). In this

context, we define local gain as improvement to the number

of sensor nodes in the cluster (coverage), the average hops

required to communicate with the sink node from a sensor

node (cost of communication), and throughput of data to the

sink node – all other relevant data can be determined from

these metrics.

In terms of gateway-to-gateway communications, at the

coarsest grained level, when a gateway node moves one of

three things can happen. Links between gateway nodes can

be broken, links between gateway nodes can be formed, or no

change to the network occurs. When a link is broken between

two gateway nodes, e.g. G5 and G6 in Fig. 1, the resulting

severed communication could affect the remaining gateways.

In the configuration of Fig 1, breaking the link G5G6 causes a

partitioning in the inter-gateway network (preventing G1, G2,

G3, G4 and G5 from reaching G6, G7, G8 and G9)

In addition, uncoordinated relocation of individual

gateways can raise race conditions. Assume that a gateway,

say G4, is careful when deciding on its new location such that

it stays reachable to all gateways to which it has

communication links (G3 and G5). Even with the precautions

that G4 takes, a network partitioning can still occur when G3

and/or G5 simultaneously relocate. The reason is that G4 will

base its relocation process on positions of G3 and G5 which

becomes invalid when they decide to move. Therefore, a

synchronization protocol needs to be applied in order to

ensure that a gateway bases its relocation decision on a

consistent global state; particularly the location of all

gateways.

5. The CORE Algorithm

CORE strives to counter the multi-gateway relocation issues

discussed in the previous section. The goal is to enable

optimization of the intra-cluster operation while ensuring the

inter-gateway connectivity. Thus, the first phase of CORE

involves locating a suitable place for a gateway node G to

Fig. 1: Gateways have communication path to each other

relocate to in order to better serve its cluster. A number of

schemes are proposed in the literature for finding such new

location [3][4]. A scenario is depicted in Fig. 2. Upon

identifying the new location, CORE requires G to base its

analysis on a consistent network state. That is being

implementing by using a mutex. Basically, a global variable

is defined and shared among the gateways (we are in the

process of removing the need for this shared data resource by

using distributed synchronization techniques). Access to this

mutex is exclusive and granted to only one gateway at a time.

Such exclusive access to this mutex will allow only one

gateway to restructure the inter-gateway topology and

prevent the potential of race conditions discussed earlier.

While having the exclusive access to the mutex, G is sure

that there is no change in the network state and can thus go

forward to evaluate the inter-cluster ramifications of its

move. If the move is deemed appropriate, i.e. it does not

cause partitioning of the inter-gateway network, G can go

ahead and relocate. G then releases the mutex and informs the

other gateways about its new location. If, however, G finds

that its move will sever the network, it will need to initiate a

recursive process of requests for movement to attempt to

keep the inter-gateway connectivity. To do this, G will have

to examine exactly which communication links it would

break by moving. For each of these links, G will need to

make a request to the gateway node G' on the other end of the

link. G' must then find a location to move to, in order to

reestablish the link while maintaining good performance

within its cluster. G' will strives to minimize the distance it

travels in order to maintain other links it has. In case, G' loses

connection with some of its neighbor gateways, it asks them

to adjust their location and so on. To terminate the procedure,

a gateway will be allowed to adjust its location only once.

At the functional level, the CORE algorithm consists of

five parts. The outer CORE function, EvaluateAndMove() is

responsible for initializing the recursion, maintaining the

critical section, i.e. the mutex, and deciding to send the

movement message. Inside EvaluateAndMove(), CORE

needs access to the FindNewLocation() function. This

function is responsible for identifying a desired location

inside the gateway's cluster to move to. Following this, the

MoveToLocation() recursive function is called. This function

trickles down through the network of connected gateways,

recalling itself for each subsequent link break and updating

CORE's view of the virtual network via the

UpdateVirtualNetwork(). The recursion also needs one other

function, FindHelpLocation(), which calculates the closest

location for a gateway to move to establish communication

with a given location subject to intra-cluster constraints.

When the recursion returns, G will compare the view of the

network with the view presented in the virtual network. Only

if the virtual network performs better in simulation based on

recent network activity, G will actually move.

6. Simulation Results

To simulate the effects of our approach on a network, we

constructed a flexible simulator engine to handle a variety of

test cases. The engine was designed to allow sensors and

gateway nodes to be scattered over a field (up to 600). The

gateway nodes would form clusters using communication

cost metric [12], and then using Dijkstra’s Shortest Path

Algorithm, dispense a multi-hop communication graph

through the cluster. Only one restriction was placed on the

selection of locations for gateway nodes by requiring them to

be within a maximum communication range of at least one

other gateway node. This ensured that the network of

gateways was not divided from the start.

After a network had been created, targets would be

dropped in the area. Targets represent areas of interest, and

could be anything from a moving vehicle, to a raging fire. In

our simulations, targets used a variety of different movement

algorithms: linear, random, and stationary. In addition,

targets could also simulate growth, or increasing area of

effect. This served to simulate an area of interest that spreads

over time, such as a forest fire. A sensor for which a target is

within its sensing radius sends a packet over multi-hop to the

gateway. Each time a packet is transmitted the battery life of

the sensor and receiver is adjusted. When a node reached

zero battery life, it was considered dead, and the network was

restructured around it.

EvaluateAndMove() {

 NewLocation = FindNewLocation()

 MUTEX: BEGIN CRITICAL SECTION

 Initialize NetworkState

 NetworkState = MoveToLocation(NewLocation, me, NetworkState)

 IF (Links are broken) {

 FOR each GatewayNode in NetworkState {

 MoveToLocation (NewLocation GatewayNode. NetworkState)

 MUTEX: END CRITICAL SECTION

MoveToLocation(Location, SinkNode, NetworkState) {

 NetworkState.List.add(me)

 NetworkState.UpdateVirtualNetwork(me, Location)

 IF (Location breaks inter-cluster communication) {

 FOR each BrokenSink {

 IF (NetworkState.List does not contain BrokenSink) {

 HelpLocation = FindHelpLocation(me.Location, BrokenSink)

 NetworkState = MoveToLocation(HelpLocation, BrokenSink,

 NetworkState)

 RETURN NetworkState

Fig. 3: Outline of the CORE algorithm

Fig. 2: The movement of the gateway node restructures the intra-
cluster topology, leaving a few source nodes orphaned.

Simulations were run on a large array of network

parameters such as the initial battery life of a node, the

cluster diameter in terms of number of hops from the

gateway, target movement type, target placements, etc. Each

experiment lasted for 5,000 cycles and was replicated 50

times over; each time a new random network using the

specified parameters was generated. The simulation was run

on that starting network configuration once with CORE and

once without relocating the gateway at all. We applied the

scheme of [3] to determine a new gateway location.

Due to space limitations, only a subset of the results

from the experiments is shown below. Fig. 4 shows the

average lifetime of sensor nodes. The figure confirms that in

all cases the algorithm proposed extended lifetime of nodes

on the average, regardless of the battery life of the nodes

used. Obviously through the gateway relocation, CORE is

making a gain in node lifetime in comparison to the baseline.

It is also logical to look at the number of orphaned nodes at

the end of each simulation. Recall that the two networks are

exact duplicates, so any sensor node not originally discovered

will never be used without CORE. Fig. 5 shows that up to

65% less sensor nodes are orphaned when using CORE.

Fig. 4: The average lifetime of a sensor node is substantially

increased no matter the battery life used

Fig. 5: The network coverage is dramatically boosted through the

application of CORE (reduced number of orphaned nodes)

Fig. 6 shows the average number of packets received at each

gateway through the course of the simulation. Coupling this

with the data shown in Figures 4 and 5, it becomes apparent

that CORE is not only saving energy, but also doing so while

producing more data by boosting the network throughput.

Fig. 6: The average number of packets received at a gateway node

is substantially increased when CORE is applied.

7. Conclusion

In wireless sensor networks, data are collected at one or

multiple gateway nodes for processing. In many application

setups, gateways coordinate among themselves in order to

efficiently and effectively handle the requirements of the

application. In this paper we have shown that repositioning

individual gateways can break inter-gateway communication

links and thus risk the disruption of the network operation.

We presented CORE a simple, yet effective, algorithm that

tackles inter-gateway coordination issues. CORE checks the

impact of relocating one gateway on the inter-gateway

connectivity possibly triggering adjustments of the position

of other gateways in order to maintain a strongly connected

inter-gateway topology. CORE has been validated in a

simulated environment of a target tracking application. Due

to space constraints, the discussion on overhead analysis, and

comparison to existing schemes has been omitted. The

experimental results have demonstrated the effectiveness of

CORE and its positive impact on contemporary metrics like

network longevity and node coverage by allowing individual

gateways more degree of freedom in optimizing their

operation through relocation.

References

[1] I. F. Akyildiz, et al., “Wireless sensor networks: a survey”, Computer

Networks, Vol. 38, pp. 393-422, 2002.

[2] C-Y. Chong and S.P. Kumar, “Sensor networks: Evolution,

opportunities, and challenges,” Proceedings of the IEEE, 91(8), 2003.

[3] K. Akkaya, M. Younis and M. Bangad “Sink Repositioning for

Enhanced Performance in Wireless Sensor Networks,” Computer

Networks, Vol. 49, pp. 512-434, 2005.

[4] Z. Maria Wang, S. Basagni, E. Melachrinoudis and C. Petrioli,

“Exploiting Sink Mobility for Maximizing Sensor Networks Lifetime”, in

the Proceedings of the 38th Annual Hawaii International Conference on

System Sciences (HICSS'05), Big Island, Hawaii, January 2005.

[5] R. Rodrigues et al., “Optimal Base Station Placement and Fixed

Channel Assignment Applied to Wireless Local Area Network Projects,”

Proc. of IEEE International Conference on Networks, Australia, 1999..

[6] M. Ahmed et al., “Positioning Range Extension Gateways in Mobile

Ad Hoc Wireless Networks to Improve Connectivity and Throughput,”

Proc. of IEEE Military Communications Conference (MILCOM 2001),

Washington, D.C., October 2001..

[7] J. Pan, L. Cai, Y. T. Hou, Y. Shi, and S. X. Shen, “Optimal Base-

Station Locations in Two-Tiered Wireless Sensor Networks” IEEE

Transactions on Mobile Computing, Vol. 4, No. 5, 2005.

[8] A. Efrat, S. Har-Peled, J. S. B. Mitchell, “Approximation Algorithms

for Two Optimal Location Problems in Sensor Networks” Proc. of the 3rd

International Conference on Broadband Communications, Networks and

Systems (Broadnets 2005), Boston, Massachusetts , October 2005.

[9] A. Bogdanov E. Maneva, S. Riesenfeld, “Power-aware Base Station

Positioning for Sensor Networks”, in the Proceedings of the 23rd

International Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM 2004) Hong Kong, March 2004.

[10] H. Kim, Y. Seok, N. Choi, Y. Choi, and T. Kwon, “Optimal Multi-sink

Positioning and Energy-efficient Routing in Wireless Sensor Networks”

Lecture Notes in Computer Science (LNCS), Vol.3391, pp.264-274,

Springer-Verlag, January/February, 2005.

[11] R. Mathew, M. Younis and S. Elsharkawy “Energy-Efficient

Bootstrapping Protocol for Wireless Sensor Network,” Innovations in

Systems and Software Engineering, 1(2), pp. 205 – 220, September 2005.

[12] G. Gupta, M. Younis, “Load-Balanced Clustering in Wireless Sensor

Networks,” in the Proceedings of the IEEE International Conference on

Communication (ICC 2003), Anchorage, Alaska, May 2003.

