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Abstract – In wireless Sensor Networks (WSNs), collected data 

are routed to multiple gateway nodes for processing. Based on the 

gathered reports, the gateways may also work collaboratively on a 

set of actions to serve application-level requirements or to better 

manage the resource-constrained WSN.  Some of these actions 

involve the relocation of some gateways. In this paper, we argue 

that changing the position of a gateway cannot be pursued without 

the consideration of the impact on inter-gateway connectivity. We 

present an efficient algorithm for Coordinated Relocation of 

gateways (CORE).  CORE strives to maintain communication 

paths among gateways while repositioning individual gateways to 

better manage the sensors in their vicinity. Simulation results have 

demonstrated the effectiveness of CORE and its positive effect on 

both network longevity and node coverage.  

1. Introduction 

Wireless sensor networks (WSNs) have numerous 

applications in a variety of disciplines, both military and 

civilian [1][2].  The ability to remotely measure ambient 

conditions and track dynamic targets/events can be 

invaluable; especially in harsh environments where human 

intervention is risky or infeasible.  Sensors are usually 

battery-operated and have a limited transmission range and 

onboard processing capacity. Such constraints have 

motivated lots of research on effective management strategies 

of WSNs that trade off resources, data fidelity, latency, and 

coverage so that the network can stay functional for the 

longest duration.  

A typical WSN architecture involves large numbers of 

sensor nodes that report their measurements to locally 

deployed data collection centers; often referred to as sink or 

gateway nodes. Gateways are usually more capable in terms 

of their energy supply, radio range and computational 

resources. In many applications, gateways coordinate among 

themselves and even move around to serve the application. 

For example, in a disaster management setup multiple robots 

may be deployed to collect in-situ sensor data, analyze such 

data and collaboratively perform a rescue mission. Another 

example is the use of rovers on planetary and lunar surfaces.  

By their very nature, WSNs should be both ad-hoc and 

scalable.  Physical deployment of a WSN should not have to 

be planned; instead nodes should be capable of being 

dropped in an area, and self-organizing. To support 

scalability, sensors are often grouped into clusters; each is led 

by a gateway node. Within a cluster, sensors reports are 

forwarded over multiple hops to the respective gateway node, 

which processes the data and then deliberates with the other 

gateways on the right course of actions. Therefore, a gateway 

node should not only reach the sensors in its cluster but also 

maintain communication channels to other gateways.   

The location of the gateway can be very influential to the 

network performance. For example, routing data to a gateway 

that is distant from the source sensors usually involves 

numerous relaying nodes and thus increases the aggregate 

delay and energy consumption and risks a packet loss due to 

link errors. In addition, ill-placed gateway nodes may cause 

some of them to be isolated from the rest and just prevent 

them from conducting the level of coordination required by 

the application. Gateway relocation has been shown to be an 

effective optimization strategy that boosts network longevity, 

timeliness and reliability [3][4]. However, most of the 

published schemes consider only a single gateway scenario. 

We argue that limiting the scope of the analysis to the intra-

cluster network can cause network partitioning and diminish 

the potential of inter-gateway coordination. 

In this paper we present CORE; an algorithm for 

Coordinated Relocation of gateway nodes. CORE considers 

the inter-cluster implications of a gateway repositioning and 

derives the necessary conditions for approving a gateway 

move. Even if the motive for a gateway’s relocation may be 

local to its cluster, the global effect of such a change in 

position is categorized and the appropriate actions are 

performed. In case a strongly connected inter-gateway 

topology can be achieved, CORE allows the repositioning. 

To handle the possibility of creating a partitioned inter-

gateway topology, CORE pursues novel heuristics that 

trigger the relocation of multiple gateways in order to 

improve the operation within individual clusters. To the best 

of our knowledge, the problem of coordinated repositioning 

of multiple gateway nodes in WSNs has not been addressed 

in the literature. 

This paper is organized as follows. Section 2 reviews 

related work in the literature. We describe the system model 

and state our assumptions.  In Section 3, we describe the 

problem and enumerate a variety of scenarios that can exist 

when moving sink nodes in a multi-cluster environment.  In 

Section 4, we discuss the CORE algorithm in details. 

Validation results are presented in Section 5. Finally, Section 

6 concludes the paper. 

2. Related Work 

Base-station (gateway) repositioning has been investigated in 

the context of wireless local area networks and cellular 

infrastructure [5]. The base stations, in these systems are 

stationary in nature and are placed in order to achieve 

coverage of an area or a building using a minimal number of 

base stations.  Another related work is reported in [6]. The 

considered model is to use a gateway node as a direct router 

for a group of mobile nodes that would be otherwise 



unreachable due to topological reasons such as blockages. 

The problem addressed is to find the optimal place for the 

gateway node to best serve the group in terms of latency and 

throughput. The pursed approach is to move the gateway to 

the weighted geographic centroid of the group by considering 

the location and traffic generated by nodes regardless the 

established routes. The approach of [3] follows similar 

methodology but it is path-based. They argue that it is not 

possible to optimally place the gateway without considering 

the network topology and inter-node links. None of these 

efforts addressed the collaborative relocation of multiple 

inter-connected gateways. 

Optimal placement of gateway nodes has been studied in 

[7][8][9][10]. The scope of [7][8] is limited to a single 

gateway node. On the other hand, the approach of [9] strives 

to maximize the data flow in the network by carefully 

positioning multiple gateway nodes. To counter the NP-

complete nature of the placement problem [8], the authors 

proposed two different approximation algorithms. The aim of 

[10] is to extend the network lifetime by distributing the load 

among the deployed sensors. An integer linear programming 

formulation was proposed to promote fairness among sensor 

nodes in terms of data flow. However, this type of research 

considers only static metrics and is applied at the time of 

network setup. We are not aware of any work that addresses 

inter-gateway networking issues while repositioning the 

individual gateways.  Currently we are extending CORE to 

handle inter-cluster communication via relay sensors. 

3. System Model 

We assume that during the network bootstrapping phase the 

gateways will perform node discovery to establish contact 

with the largest number of deployed sensors [11]. The 

gateways then divide the discovered sensor nodes among 

them, forming clusters. Our approach is independent from the 

clustering criteria which may be load balancing, 

communication range, etc. [12]. A gateway is responsible for 

managing the sensors in its clusters. A sensor node is capable 

of communicating with the gateway of its cluster either 

directly or over a multi-hop path. Nodes that are incapable of 

reaching any gateway are considered orphaned.  

A gateway node is assumed to have motion capabilities, 

e.g a rover. We assume that gateways understand the layout 

of their own clusters in relative terms at least. We also 

assume that a gateway node has initial contact with all other 

gateways in the network.  Our algorithm will maintain this 

contact, which will ensure that gateway nodes (through inter-

gateway communication) will be able to build a global view 

of the entire network by sharing local views of clusters.  

Gateway nodes do not need to be in direct transmission range 

of all other gateways in the network, but a path must be 

available that links each gateway to another.  Fig. 1 shows a 

sample valid network setup. 

4. Problem Description 

As indicated earlier, gateway relocation is an effective 

scheme for optimizing the network operation within the 

individual cluster. The main issues are when it makes sense 

to move the gateway, where to place it and how to handle the 

packet traffic while the gateway is on the move [3].  

However, the relocation problem is substantially 

compounded when a network consists of multiple clusters.  A 

gateway node cannot choose to arbitrarily wander around its 

cluster to enhance the intra-cluster network operation (local 

gain) without considering the potential impact this could 

inflict on its ability to maintain communication with the 

gateway nodes of other clusters (global effect).   In this 

context, we define local gain as improvement to the number 

of sensor nodes in the cluster (coverage), the average hops 

required to communicate with the sink node from  a sensor 

node (cost of communication), and throughput of data to the 

sink node – all other relevant data can be determined from 

these metrics. 

In terms of gateway-to-gateway communications, at the 

coarsest grained level, when a gateway node moves one of 

three things can happen.  Links between gateway nodes can 

be broken, links between gateway nodes can be formed, or no 

change to the network occurs. When a link is broken between 

two gateway nodes, e.g. G5 and G6 in Fig. 1, the resulting 

severed communication could affect the remaining gateways. 

In the configuration of Fig 1, breaking the link G5G6 causes a 

partitioning in the inter-gateway network (preventing G1, G2, 

G3, G4 and G5 from reaching G6, G7, G8 and G9) 

In addition, uncoordinated relocation of individual 

gateways can raise race conditions. Assume that a gateway, 

say G4, is careful when deciding on its new location such that 

it stays reachable to all gateways to which it has 

communication links (G3 and G5). Even with the precautions 

that G4 takes, a network partitioning can still occur when G3 

and/or G5 simultaneously relocate. The reason is that G4 will 

base its relocation process on positions of G3 and G5 which 

becomes invalid when they decide to move. Therefore, a 

synchronization protocol needs to be applied in order to 

ensure that a gateway bases its relocation decision on a 

consistent global state; particularly the location of all 

gateways.  

5. The CORE Algorithm 

CORE strives to counter the multi-gateway relocation issues 

discussed in the previous section. The goal is to enable 

optimization of the intra-cluster operation while ensuring the 

inter-gateway connectivity. Thus, the first phase of CORE 

involves locating a suitable place for a gateway node G to 
 

Fig. 1: Gateways have communication path to each other 

 



relocate to in order to better serve its cluster.  A number of 

schemes are proposed in the literature for finding such new 

location [3][4]. A scenario is depicted in Fig. 2. Upon 

identifying the new location, CORE requires G to base its 

analysis on a consistent network state. That is being 

implementing by using a mutex. Basically, a global variable 

is defined and shared among the gateways (we are in the 

process of removing the need for this shared data resource by 

using distributed synchronization techniques). Access to this 

mutex is exclusive and granted to only one gateway at a time. 

Such exclusive access to this mutex will allow only one 

gateway to restructure the inter-gateway topology and 

prevent the potential of race conditions discussed earlier.  

While having the exclusive access to the mutex, G is sure 

that there is no change in the network state and can thus go 

forward to evaluate the inter-cluster ramifications of its 

move. If the move is deemed appropriate, i.e. it does not 

cause partitioning of the inter-gateway network, G can go 

ahead and relocate. G then releases the mutex and informs the 

other gateways about its new location.  If, however, G finds 

that its move will sever the network, it will need to initiate a 

recursive process of requests for movement to attempt to 

keep the inter-gateway connectivity.  To do this, G will have 

to examine exactly which communication links it would 

break by moving.  For each of these links, G will need to 

make a request to the gateway node G' on the other end of the 

link.  G' must then find a location to move to, in order to 

reestablish the link while maintaining good performance 

within its cluster. G' will strives to minimize the distance it 

travels in order to maintain other links it has. In case, G' loses 

connection with some of its neighbor gateways, it asks them 

to adjust their location and so on. To terminate the procedure, 

a gateway will be allowed to adjust its location only once.  

At the functional level, the CORE algorithm consists of 

five parts. The outer CORE function, EvaluateAndMove() is 

responsible for initializing the recursion, maintaining the 

critical section, i.e. the mutex, and deciding to send the 

movement message. Inside EvaluateAndMove(), CORE 

needs access to the FindNewLocation() function. This 

function is responsible for identifying a desired location 

inside the gateway's cluster to move to. Following this, the 

MoveToLocation() recursive function is called. This function 

trickles down through the network of connected gateways, 

recalling itself for each subsequent link break and updating 

CORE's view of the virtual network via the 

UpdateVirtualNetwork(). The recursion also needs one other 

function, FindHelpLocation(), which calculates the closest 

location for a gateway to move to establish communication 

with a given location subject to intra-cluster constraints.  

When the recursion returns, G will compare the view of the 

network with the view presented in the virtual network.  Only 

if the virtual network performs better in simulation based on 

recent network activity, G will actually move. 

6. Simulation Results 

To simulate the effects of our approach on a network, we 

constructed a flexible simulator engine to handle a variety of 

test cases.  The engine was designed to allow sensors and 

gateway nodes to be scattered over a field (up to 600).  The 

gateway nodes would form clusters using communication 

cost metric [12], and then using Dijkstra’s Shortest Path 

Algorithm, dispense a multi-hop communication graph 

through the cluster.  Only one restriction was placed on the 

selection of locations for gateway nodes by requiring them to 

be within a maximum communication range of at least one 

other gateway node.  This ensured that the network of 

gateways was not divided from the start.  

After a network had been created, targets would be 

dropped in the area.  Targets represent areas of interest, and 

could be anything from a moving vehicle, to a raging fire.  In 

our simulations, targets used a variety of different movement 

algorithms: linear, random, and stationary.  In addition, 

targets could also simulate growth, or increasing area of 

effect.  This served to simulate an area of interest that spreads 

over time, such as a forest fire. A sensor for which a target is 

within its sensing radius sends a packet over multi-hop to the 

gateway.  Each time a packet is transmitted the battery life of 

the sensor and receiver is adjusted. When a node reached 

zero battery life, it was considered dead, and the network was 

restructured around it. 

EvaluateAndMove() { 

    NewLocation = FindNewLocation() 

    MUTEX:  BEGIN CRITICAL SECTION 

    Initialize NetworkState 

    NetworkState = MoveToLocation(NewLocation, me, NetworkState) 

    IF (Links are broken) { 

        FOR each GatewayNode in NetworkState { 

      MoveToLocation (NewLocation GatewayNode. NetworkState) 

    MUTEX: END CRITICAL SECTION 

 

MoveToLocation(Location, SinkNode, NetworkState) { 

    NetworkState.List.add(me) 

    NetworkState.UpdateVirtualNetwork(me, Location) 

    IF (Location breaks inter-cluster communication) { 

        FOR each BrokenSink { 

            IF (NetworkState.List does not contain BrokenSink) { 

                HelpLocation = FindHelpLocation(me.Location, BrokenSink) 

                NetworkState = MoveToLocation(HelpLocation, BrokenSink, 

                                                                         NetworkState) 

    RETURN NetworkState 
 

Fig. 3: Outline of the CORE algorithm 

 

Fig. 2: The movement of the gateway node restructures the intra-
cluster topology, leaving a few source nodes orphaned. 



Simulations were run on a large array of network 

parameters such as the initial battery life of a node, the 

cluster diameter in terms of number of hops from the 

gateway, target movement type, target placements, etc. Each 

experiment lasted for 5,000 cycles and was replicated 50 

times over; each time a new random network using the 

specified parameters was generated.  The simulation was run 

on that starting network configuration once with CORE and 

once without relocating the gateway at all. We applied the 

scheme of [3] to determine a new gateway location. 

Due to space limitations, only a subset of the results 

from the experiments is shown below. Fig. 4 shows the 

average lifetime of sensor nodes.  The figure confirms that in 

all cases the algorithm proposed extended lifetime of nodes 

on the average, regardless of the battery life of the nodes 

used. Obviously through the gateway relocation, CORE is 

making a gain in node lifetime in comparison to the baseline. 

It is also logical to look at the number of orphaned nodes at 

the end of each simulation.  Recall that the two networks are 

exact duplicates, so any sensor node not originally discovered 

will never be used without CORE. Fig. 5 shows that up to 

65% less sensor nodes are orphaned when using CORE. 

 

Fig. 4: The average lifetime of a sensor node is substantially 

increased no matter the battery life used 

 
Fig. 5: The network coverage is dramatically boosted through the 

application of CORE (reduced number of orphaned nodes)  

Fig. 6 shows the average number of packets received at each 

gateway through the course of the simulation.  Coupling this 

with the data shown in Figures 4 and 5, it becomes apparent 

that CORE is not only saving energy, but also doing so while 

producing more data by boosting the network throughput. 

 
Fig. 6: The average number of packets received at a gateway node 

is substantially increased when CORE is applied. 

7. Conclusion 

In wireless sensor networks, data are collected at one or 

multiple gateway nodes for processing. In many application 

setups, gateways coordinate among themselves in order to 

efficiently and effectively handle the requirements of the 

application.  In this paper we have shown that repositioning 

individual gateways can break inter-gateway communication 

links and thus risk the disruption of the network operation.  

We presented CORE a simple, yet effective, algorithm that 

tackles inter-gateway coordination issues. CORE checks the 

impact of relocating one gateway on the inter-gateway 

connectivity possibly triggering adjustments of the position 

of other gateways in order to maintain a strongly connected 

inter-gateway topology. CORE has been validated in a 

simulated environment of a target tracking application.  Due 

to space constraints, the discussion on overhead analysis, and 

comparison to existing schemes has been omitted.  The 

experimental results have demonstrated the effectiveness of 

CORE and its positive impact on contemporary metrics like 

network longevity and node coverage by allowing individual 

gateways more degree of freedom in optimizing their 

operation through relocation.   
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