
XPod: A Human Activity Aware Learning Mobile Music Player

Abstract

The XPod system, presented in this paper, aims
to integrate awareness of human activity and mu-
sical preferences to produce an adaptive system
that plays the contextually correct music. The
XPod project introduces a “smart” music player
that learns its user’s preferences and activity, and
tailors its music selections accordingly. We are us-
ing a BodyMedia device that has been shown to ac-
curately measure a user’s physiological state. The
device is able to monitor a number of variables to
determine its user’s levels of activity, motion and
physical state so that it may predict what music is
appropriate at that point. The XPod user trains the
player to understand what music is preferred and
under what conditions. After training, the XPod,
using various machine-learning techniques, is able
to predict the desirability of a song, given the user’s
physical state.

1 Introduction

In this paper we study the problem of choosing the contextu-
ally correct music. We propose a machine learning solution
and evaluate several solutions. Individual have very differ-
ent musical preferences therefore machine learning is need
to construct a unique system for every person. We studied
several machine learning systems on a modified version of
the existing mobile MP3 player, XPod. This player is able to
automate the process of selecting the song best suited to the
current activity of the user. XPod was previously reported on
in [Dornbush et al., 2005], wherein the system was designed
to use a neural network to suggest music to users. In this
paper we expand on that work, and approach many different
machine-learning algorithms, with varied results. In Section
2, we will review similar work in this field. In Section 3, we
will discuss first the motivation for such a device. In Sec-
tion 4, we will speak about the data collected and how it was
used to produce learning algorithms. We will then discuss
the results of five experiments in Section 5, and end with a
discussion on future research in this area in Section 6.

Figure 1: Proposed XPod Form Factor

2 Related Work
This paper proposes an extension to the mobile MP3 player,
XPod, which is able to automate the process of selecting the
song best suited to the current activity of the user. That sys-
tem used a hodgepodge of machine learning techniques to
play the contextually correct music. First all of the user state
information was reduced to one of three states (active, pas-
sive and resting) using a decision tree. The state was used as
input to an approximation of KNN and a neural network to
estimate the users preference of a song. While this showed
the potential of a adaptive context aware music player it had
significant limitations. Other attempts to relate user activity
to mobile devices [Bylund and Segall, 2004][Siewiorek et al.,
2003], have targeted the mobile phone user experience.

The concept of a music player that is aware of the user’s
activity has made it into the mainstream market with industry
leaders Nike and Apple teaming up to deliver a iPod that com-
municates with a Nike running shoe equipped with a sensor
and wireless communication[Nike and Apple, 2006]. That
system has had limited market success so far, but has shown
that there is consumer interest. The primary use case for this
system is to archive and analyze a runners athletic perfor-



Figure 2: An author collecting training data.

mance. That system is built to train the user, not where the
user trains the system. We uniquely address the problem of a
context aware music player that learns a users preferences.

Other researchers have studied the relationship between a
users activity and the music selection played for them. [Elliott
and Tomlinson, 2006] developed a system that correlates the
song played to a users pace. This system used very simplis-
tic learning algorithm to determine the song played. Sonic
City[Gaye et al., 2003][Gaye and Holmquist, 2004] devel-
oped a wearable jacket that choose the song based on the
sensed light, noise and movement.

3 Motivation
The XPod concept is based on the idea of automating much
of the interaction between the music player and its user. The
XPod project introduces a “smart” music player that learns
its user’s musical preferences for different activities, and tai-
lors it’s music selections accordingly. The device is able to
monitor a number of variables to determine its user’s levels
of activity, motion and physical states at the current moment
and predict what music would be appropriate. The XPod user
trains the player under what conditions what music is pre-
ferred. After an initial training period, XPod is able to use its

Name Type
Galvanic Skin Response Real value
Mean Acceleration Longitudinal Real value
Std. Dev. Acceleration Longitudinal Real value
Mean Acceleration Transversal Real value
Std. Dev. Acceleration Transversal Real value
Skin Temperature Real value
Heat Flow Real value
Heat Flow Cover Real value
Transversal Cadence Integer
Longitudinal Cadence Integer
Time of Day Integer
Day of Week Integer
Song Genre Symbolic
Song Artist Symbolic
Song Album Symbolic
Song Title Symbolic
Beats Per Minute Integer
User’s Action Integer{0-4}

Table 1: Input vector fields for XPod classifiers.

internal algorithms to make an educated selection of the song
that would best fit its user’s emotion and activity.

Before playing a song the internal algorithm is used to pre-
dict the users rating of that song in their current state. That
prediction is used to weigh the chance that the current song
will be played. A song with a low expected rating may be
skipped in the current state. Every song has a chance of be-
ing played at any time. This is done so that the XPod explores
the feature space and does not get stuck playing a few songs.
The system uses an approximation of a Dirichlet priors.

We propose a form factor if Figure 1 where the device is
mounted on an armband. This fits in the existing widespread
use of MP3 players mounted on armbands. In addition a de-
vice on the arm can capture an accurate view of how a user is
moving their body.

4 XPod Dataset
The XPod system is comprised of a standard MP3 playing
device and a body response sensor device. The device is ca-
pable of tracking and storing all song data as a song is played,
including artist, album, genre, title, and beats-per-minute. In
addition, the system records the time of day, a user’s rating
(from 0 to 4 stars), and a full range of physical responses from
the user’s body. These measurements include skin tempera-
ture, heat flow, two dimensions of acceleration, cadence, and
galvanic skin response. Galvanic skin response is a measure
of how much sweat is on the user’s skin. A complete list of
data collected, is presented in table 1. Each of the symbolic
attributes, artist, album, title, and genre are all expanded into
a large number of binary attributes. This was done so that the
symbolic attributes could be accurately handled by the nu-
merical algorithms, such as SVMs and neural networks. For
this reason the total number of attributes including the user
state is 289. Typically each instance is a sparse array with
most attributes set to 0 or false.



To gather the information about the user’s physical state, a
BodyMedia [BodyMedia, 2006] device was used. This device
straps on to the arm, and broadcasts its readings wirelessly
to a nearby system, which recorded the data for use by the
XPod. The BodyMedia device is capable of monitoring a
user’s physiological and emotional state.[Nasoz et al., 2003]
We focused on the physiological state; however this system
should be able to adapt musical preference to the emotional
state.

5 Machine Learning Algorithms
To test the XPod, we trained several independent learning al-
gorithms on our test data. To construct our dataset, we gath-
ered 239 different mp3 song files. Each song was analyzed to
find the beats per minute. A researcher collected training in-
formation using a prototype system. The prototype shown in
Figure 2 involved a tablet computer and a BodyMedia device.

A researcher on the XPod team proceeded to record train-
ing instances in a variety of physical situations (exercise, mild
activity, rest, etc.). A training instance, or data point, includes
a value for each field in Table 4. 565 training instances were
recorded. For each instance the XPod player would rate a
song and play that song. If the rating matched the researcher’s
preference he took no action. If the rating did not match the
preference the researcher gave the song a rating from 0 to 4,
reflecting how appropriate the researcher felt the song was at
that time. A rating of 0 would result in the music player skip-
ping the remainder of the song. Each classification algorithm
could now train on some or all of the training instances, and
could use the knowledge learned to predict how a user would
rate a song in the future.

It is our goal to show that a music player will be able to
choose the contextually correct music if it uses information
about a user’s physiological state. To prove this theory we
created two sets of machine learning systems, those trained
with user state information, and those without user state in-
formation. “State” refers to the array of information gained
from the BodyMedia device, as well as any other outside in-
formation, such as date and time. The purpose of this is to
show improvement in the classification algorithms when they
are provided with the additional state information.

We used 10 fold cross-validation to measure the accu-
racy of the machine learning algorithms. We also experi-
mented with Leave-One-Out-Cross-Validation(LOOCV). We
found very similar results between the two methods. Since
LOOCV is much more expensive we have reported the re-
sults of 10 fold cross-validation. We used classifiers from the
open source Weka library[Witten and Frank, 2005] and neu-
ral networks from the open source Joone library[Marrone and
Team, 2006].

5.1 Decision Trees
The first classifier used was the decision tree algorithm
(J48)[Quinlan, 1993]. When learning without state, the de-
cision tree was able to properly classify the training data
39.47% of the time. However, when using state, the decision
tree was able to properly classify the training data 41.06% of
the time. The accuracy of decision trees was not the best in

the survey, however they do show a slight (2%) advantage of
using state information in the learning algorithm. Since J48
divides the source data by the attribute that most cleanly sep-
arates the dataset, one can use the resulting tree to see what
attributes are the most important.

5.2 AdaBoost
The J48 classifier improved significantly when it was boosted
with AdaBoost (AdaBoostM1)[Freund and Schapire, 1996].
This classifier was correct against the training data 39.47%
without state, and 46.55% with state. This showed that Ad-
aBoost is very effective at increasing the effectiveness of the
J48 algorithm.

5.3 Support Vector Machine (SVM)
The third classifier we experimented with was support vec-
tor machines (SMO)[Platt, 1998][Keerthi et al., 2001] gen-
eralized well and had a little improvement when using state
(43.19%) over not using state (40.89%). In this case the SVM
was almost able to divide the dataset into the researcher’s
preference based solely on the musical data. When adding
in state, the dimension space changed minimally, adjusting
enough to shuffle a few incorrectly classified instances to the
proper area.

The small difference between the SVM trained with state
information and without state information, (2%) is likely a
result of the relatively large feature space and small training
set. The expressiveness of the second order kernel allows the
SVM to identify the user’s preference without the state infor-
mation.

5.4 K-Nearest Neighbors(KNN)
We had surprisingly positive results from the lazy classifier:
k-nearest neighbors (IBK)[Aha and Kibler, 1991]. We al-
lowed Weka to choose the optimal number of neighbors. The
best number of neighbors was found to be 9. Results showed
a 7% increase in accuracy when using state (46.72%) over
not using state (39.82%). More importantly KNN had a low
RMSE(0.3753).

5.5 Neural Networks
We had very promising results from a neural network trained
on this data. We created a three layer network with 288, or
276 inputs depending on whether state information was used.
A small hidden layer and a single neuron output was used. We
experimented with a variety of different size hidden layers
from 1 to 50. The results of these experiments are shown
in 4(b) and 4(a) We found very similar results with a small
number of hidden nodes 3 as when we used a large number
of hidden nodes, 50. As the size of the hidden layers grows
the accuracy of the network given state information does not
increase much. However the accuracy of the without state
network does increase. We believe that the more complex
networks are better at memorizing erroneous information to
accurately rate the songs.

We had difficulties with over training. The network would
find the best validation error in the first 100 training epochs.



(a) % Accuracy of various learning algorithms. (b) RMSE of various learning algorithms.

Figure 3: Performance of learning algorithms

(a) % Accurately identified using different size hidden layers. (b) RMSE using different size hidden layers.

Figure 4: Performance of different size networks.

We used early stoping to keep the best network on the val-
idation data. We are investigating ways to avoid this prob-
lem. We were able to achieve respectable performance with a
network given state information correctly classified instances
43.54% much better than the 31.87% accuracy without state
information. This is not the best percent accuracy, however
it did get the best results in terms of root mean squared er-
ror(RMSE)(0.17). The neural network had a fraction the
RMSE of the other methods.

6 Conclusion and Future Work
Our goal was to show that a music player trained with a user’s
physical activity and preference could choose the contextu-
ally correct music. All of the systems evaluated performed
significantly better than chance. As shown in Figure 3(a),
given state information every system chooses the exactly cor-
rect label more often than the same algorithm without state in-
formation. Figure 3(b) shows that, the tree based algorithms
tended to generalize poorly, the RMSE is greater for the state-
ful systems than the stateless systems. The other algorithm
were able to generalize well and achieved high accuracy and
low RMSE.

We believe that if we collected still more training instances
that the difference between the performance of the statefull
and the stateless system would grow. Presumably if we col-
lected enough training instance we would find instances that
are identical on all non-state attributes but have different rat-
ings. Then any classifier without state information would
have to give both instances the same label. Only one could

possibly be correct. A classifier that had the same instance
and has the state information has a chance to classify both in-
stances correctly. Therefor if we collected more training in-
stances the difference between stateful and stateless systems
should increase.

Although the lazy classifiers tended to perform well, in
practice this might not be the case. Specifically, a portable
music device is not likely to have high processing power.
Given an active user of such a device, listening for multiple
hours a day, over the course of one or two years, the device
would search an instance space of over 20,000 data points.
Performing a calculation like this might be more than ineffi-
cient: it could be wholly impractical.

Support vector machines may be well suited to the task
as they can begin to classify new instances having very little
training data to build on. From the end-user’s perspective, this
is a desirable feature, as the user would need to spend very
little time setting up the system, and more time enjoying the
benefits. Further, SVMs are capable of classifying in a very
high dimensional space while only performing calculations in
a much smaller number of dimensions. However it is not clear
if SVMs could be created on a constrained device. Perhaps
the SVMs would be created on a unconstrained device such
as a PC, then the trained SVM would be transferred to the
portable device. Even small devices can evaluate an SVM.

Decision trees would likely be the most computational fea-
sible classifier, as they can be converted into a rule set, which
can be evaluated very rapidly. As we’ve shown in this appli-
cation, decision trees perform much better with boosting.



Our view is that the neural network is the most promis-
ing result. Although it did not get the highest exact accu-
racy it tended to get very close to the right answer, reflected
in the small RMSE. Since the result was used to influence
pseudo-random choice of music it is actually more important
to be close than to be exactly accurate. Many embedded de-
vices such as mobile phones already employ neural networks,
therefor it should be possible to use neural networks in mobile
music playing devices.

In future work we will investigate other meta-data that
could be associated with the music. We have used relatively
simple music analyzing software to find the beats per minute,
however it is possible to find much more by analyzing the
music[Logan and Salomon, 2001]. It would also be inter-
esting to investigate human generated meta data in commu-
nity systems such as the Pandor Project[Project, 2006] or
Audoscrobbler[Audioscrobbler, 2006]. Any new meta-data
regarding songs could be included as additional inputs into
the machine learning algorithms. We will investigate aug-
menting the training instances already collected with addi-
tional meta-data. Our goal will be to see if there is a signifi-
cant increase in performance given new information.

We will investigate prototyping this system in a physical
device. While the BodyMedia device provides many different
attributes a satisfactory system could likely be built with a se-
lection of those attributes. An investigation into decision tree
built by J48 show 20 decisions based on acceleration, almost
four times more than the sum of all decisions based on other
state variables. We would likely either add an accelerometer
to a an general purpose PDA or use the Nike iPod system.

We have shown the relative advantages of different ma-
chine learning system at choosing the contextually correct
music. People have shown an interest in this type of system
however more works need to be done to further refine this
system.
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