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1. Statement of Topic and Goals 

 
Semantically annotated text has received plenty of attention recently from various 
academic and commercial interests.  The Semantic Web, an extension of the World Wide 
Web, whose content is expressed in both natural language, and a marked-up, or meta-
language understandable to software agents, is a hot topic, and for good reason.  
Extracting opinions from blogs, topic gisting of informative pages, and 
question/answering in search engines: all of these processes, and more, benefit from 
semantically annotated text. 
 
Although text can be semantically annotated by hand, this is a time consuming, and error 
prone task, and is the cause of one of the major drawbacks to basing a system around 
semantically annotated text.  Natural Language Processing (NLP), is a field of artificial 
intelligence concerned with extracting semantic annotation from natural language texts 
(either automatically, or semi-automatically).  A NLP system aims to understand some 
language (or subset of a language), and facilitates any task whose input is semantically 
annotated texts. 
 
Machine Learning (ML), another field of artificial intelligence, is concerned primarily 
with the development of algorithms which allow a computer to learn something, given a 
set of inputs, that it did not yet know; a primary goal of ML is to facilitate this task in a 
fully automated way, and to produce meaningful and relevant evaluations (also 
automatically) of the learned information.  A successful ML system will be able to both 
learn new and useful information, and report back how accurate the information learned 
is, on the whole. 
 
The proposal presented in this document reflects a hybrid of the two field of AI described 
above: NLP and ML, for the purpose of facilitating the development of an NLP system, 
which in turn facilitates automatic and semi-automatic semantic annotation of text.  Any 
NLP (and indeed ML) system needs a series of inputs, or a set of bootstrapped data.  In 
NLP, this is an extremely time consuming process, and the quality and coverage of the 
NLP system is directly related to the quality and coverage of the “world knowledge” it is 
given.  The proposal presented in the remainder of this document aims to use a NLP 
system and the web as a corpus as inputs to a ML system.  The ML system, as outputs, 
will produce more semantically annotated “world concepts” to be fed into the NLP 
system.  This process will feed upon itself, creating a spiral learning cycle.  As the NLP 
system grows, it will produce more and better coverage, allowing the ML system to learn 
more and better knowledge, which will in turn grow the NLP system again. 



 
Such a system will facilitate the production of semantically annotated texts, and qualifies 
as a “lifelong learning” system: as long as new information exists, and is available 
through the WWW, the system will continue to learn, annotate, and archive that 
information.  In addition, such a system would also promote the growth of one of the 
long-term goals in the NLP/AI community: the creation of a cognitive system (or agent), 
capable of communication with humans (in the form of comprehensive language 
understanding and generation). 
 
2. Motivation 

 
One of the greatest challenges to the quality and coverage of a NLP system is the 
acquisition of knowledge.  Without a sufficient lexicon of words, and a broad coverage of 
“world knowledge”, a NLP system would fall short on many, if not most, texts it 
encountered.  Although clever NLP systems may be able to get around their knowledge 
shortcomings with crafty syntactic dependency structures, among other tricks, this is 
merely a workaround to produce some sort of results.  The “knowledge acquisition 
bottleneck” is often observed as one of the fundamental problems facing the development 
of a quality, broad coverage NLP system. 
 
For this reason, many NLP systems are developed with specific corpora in mind.  
Knowing a system will only ever have to semantically annotate a corpus of very specific 
texts on certain medical conditions can alleviate the need for acquiring knowledge on 
sports teams, soft drinks, or Mongolian history.  However, such an NLP system does not 
have broad coverage, as its purpose is singular in nature. 
 
For this reason, automating knowledge acquisition is considered a fundamental step 
towards developing a quality NLP system; acquiring all the world’s knowledge by hand 
would be far too laborious a process.  Automating knowledge acquisition has been 
worked on in a variety of fashions for some time now.  [Navigli et al., 2004] used a 
method known as structural semantic interconnections to produce the meaning of a 
complex concept from the meanings of its constituent concepts (business plan derived 
from business and plan).  Often times, ML methods are applied over a syntactically 
parsed sentence to extract semantic roles [Yangarber, 2003], [Reinberger and Spyns, 
2004], [Toutanova et al., 2005] to name a few. 
 
There is an inherent drawback in the way these learners work, however: in general, a 
system that is only taking into account a syntactic parse tree (be it deep or shallow) as 
input to extract semantic information from a text is missing out on a wide amount of data 
that can only be extracted with a semantic parse of the same text.  However, in order to 
produce a semantic parse, a semantic analyzer, with a substantially broad coverage of 
“world knowledge” must be present.  This presents a Catch-22: in order to accurately 
capture all of the knowledge hidden in a text, a semantic text analyzer must be used, but 
in order to produce such an analyzer, knowledge must be learned.  The only way out of 
this cycle is to spend a long time acquiring knowledge for the analyzer by hand.  This, 
naturally, leads to the hope that given a significantly broad coverage of knowledge, the 



remainder (and majority) of the knowledge can be learned automatically, thus saving 
significant time in the development of a robust and powerful semantic text analyzer. 
 
If such a system could be devised, it could fuel itself until it had substantially broad 
enough coverage and quality of “world knowledge” to begin annotating the low-quality 
texts found widely through the WWW automatically.  Such a system could semantically 
annotate the web accurately, and without human intervention, thus facilitating opinion 
extracting, topic gisting, question answering, and more. 
 
3. Proposal 

 
This document proposes a system that, given a semantic analyzer of varying quality, a set 
of “world knowledge” with broad enough coverage of common words in a given 
language (note that common words refers to commonly used words, but in no way the 
majority of words, or lexical senses, found in the language), and an open corpus, will 
continually seek out unknown words and senses in the corpus, and using the corpus and 
semantic analyzer, produce a high quality set of new “world knowledge” to be appended 
to the existing set, thus broadening coverage and allowing for more accurate learning to 
continue. 
 
Such a system would work in the following way: 
 

1. Given an input of an unknown word (this may be found automatically be simply 
scanning the corpus until one is discovered, or entered manually), the corpus will 
be scanned, and all relevant documents will be retrieved. 

2. The documents will be semantically analyzed using the NLP system.  Although 
the unknown word will produce less than completely accurate results (by 
definition), a process known as unidirectional selectional restrictions will allow 
the NLP system to make quality guesses as to the meaning of the unknown word, 
and will proceed to produce an analysis that assigns meaning and knowledge to 
the guessed word. 

3. The snippets of knowledge about the unknown word collected from each analyzed 
text in the corpus will be combined to produce a much more accurate “meaning” 
of the unknown word. 

4. This meaning will be compared to existing meanings in the “world knowledge”, 
in order to find a hierarchical, or hypernym/hyponym, relationship between the 
new and existing knowledge.  Such a relationship will allow the system to “fill in 
the blanks”, fleshing out the knowledge of the new word.  This word can then be 
added to the “world knowledge”, and is ready to be used in further semantic 
analysis. 

 
For a system to undergo lifelong learning, it must be able to endlessly pick up on the 
existence of new information, and have a suitable amount of supporting facts to learn 
from.  If this is to be the case, a closed corpus, or domain specific corpus is not sufficient.  
Using a domain specific corpus, a learning system could eventually exhaust all of the 
knowledge contained, and would eventually be left to spin its wheels.  Although this may 



be very practical for a specific task, and indeed the proposed method could be adapted to 
this task (given a suitably large enough corpus), it is not the desired goal of a lifelong 
learner.  The corpus proposed must be an open corpus, with general knowledge on most 
anything.  Due to its accessibility, size, rate of growth, and naturally occurring 
inaccuracies, the web is a perfect candidate for a lifelong learning system. 
 
Using the web as a corpus has been done before, in a variety of learning tasks.  It may be 
used to provide data (in the most standard way a corpus does), or to provide statistical 
measures of linguistic phenomena (using Google hit counts, among others).  [Kilgarriff 
and Grefenstette, 2003] covered the issue of the web as a corpus.  They concluded that 
the web fits the definition of a corpus, and can provide a variety of positive information 
by the nature of its noisy data.  Although erroneous data (factual, grammatical, etc.) 
exists, it is often far outweighed by the volume of correct data; this can be beneficial 
information to any language learning system: knowing what can be wrong, and how it 
can be wrong is a powerful tool, especially when it the pattern of “wrongness” can be 
clearly picked out and recorded. 
 
The web works especially well as a corpus for the system proposed: the system is 
intended to simply find unknown words, of no particular domain, and learn their 
meaning.  The system is presupposed to have broad enough coverage of common world 
knowledge mapped to lexical senses.  Having this background, the proposed system 
should be able to query the web for texts matching the unknown word, retrieve an ample 
amount of simple sentences, of which all but the target word are known to the system, 
and construct a reasonably accurate semantic representation from the text.  In this way, 
the web provides a more ideal corpus than a domain specific one: a domain specific text 
would have more domain specific (and hence, unknown) words per sentence than a 
general, or domain in-specific one.  In order for the system to work as well on a domain 
specific corpus, knowledge acquisition on the common words to that corpus would have 
to first be done, in order to grant the system a “leg up” on the knowledge. 
 
However, the noise of the web can also be a drawback to such a system.  A variety of 
clever filtering methods will have to be used to weed out bad data.  These methods can be 
at the syntactic or semantic sentence meaning level, or as basic as systems level filtering: 
removing malformed html, and timed-out page requests. 
 
Filtering will also have to be done at the knowledge learning stage.  After semantic 
analysis, the extracted knowledge will have to be filtered to provide a more accurate view 
of the unknown word.  This filtering can be done by comparing the extracted data with 
other extracted data, or by comparing it to the bootstrapped (manually acquired, or 
previously learned) world knowledge.  Following the filtering, the pruned knowledge will 
have to be placed into the existing knowledge appropriately.  Comparison algorithms will 
have to test the similarity of the new knowledge to existing data, in an attempt to find a 
location in the data hierarchy.  This can be done using a nearest neighbor technique 
(using Euclidean distance in an n-dimensional space), or other similarity measures. 
 



Once the data has been extracted, filtered, and placed in the existing knowledge, it needs 
to be evaluated.  Evaluation can take place both manually, and automatically.  Learned 
knowledge needs to have both its accuracy and correctness evaluated, its usefulness in the 
“world knowledge” as a whole, as well as its benefit to the learning system in the future.  
Recall, learning knowledge through this system is intended to reduce the pressure of 
manual knowledge acquisition.  If the learned knowledge is inaccurate, or serves little 
purpose in the existing knowledge, then time has been wasted. 
 
To test the accuracy of the learned knowledge, an expert can manually acquire 
knowledge.  The automatically learned, and manually acquired knowledge can be 
compared side by side to determine a level of correctness.  To judge the usefulness of 
adding the learned knowledge to the “world knowledge”, semantic annotations of text 
containing the previously unknown word can be generated twice: once with, and once 
without the learned knowledge.  The quality of the annotations can be compared to each 
other, or compared to a third, manually constructed annotation.  Judging the benefit to the 
learning system can be done by attempting to learn a subsequent, yet related word, once 
with the new knowledge and once without.  The newly learned data can then be evaluated 
in the same ways described before, giving a third method of evaluation to the previously 
learned knowledge. 
 
Any of these methods of evaluation can also be performed automatically (with less 
accuracy) by using various ML evaluation techniques.  Leave one out cross-validation 
can be used to compare semantic annotations, and automatically generated knowledge. 
 
4. Setting up the Experiments  

 
In order to begin experimentation, the system presupposes the existence of a semantic 
text analyzer.  To fill this need, the OntoSem system [Nirenburg and Raskin, 2004] will 
be used.  OntoSem, an implementation of the theory of ontological semantics is a system 
developed at the ILIT research lab at UMBC.  OntoSem’s primary function is to produce 
semantic annotations of text (in the form of text meaning representations: TMRs), and 
uses, as input, a semantic ontology of world knowledge, and a semantic lexicon of word 
sense mappings (with constraints) to the ontology. 
 
The use of OntoSem provides a perfect starting point for the proposed system.  OntoSem 
itself is capable of semantically annotating texts, and the quality of its annotations are in a 
large part dependent on the quality and coverage of its ontology and lexicon. The 
ontology consists of a collection of concepts, which are hierarchically ordered and 
defined as a set of property/value pairs.  The output of the annotations, the TMR, is a 
collection of constrained property/value pairs on instances of ontological concepts.  This 
setup would allow the proposed learning system to use OntoSem to semantically analyze 
a text, and extract snippets of world knowledge about an unknown word in the form of 
automatically generated property/value pairs.  These pairs have an intimate relationship 
with the definition of the ontology, and would allow for accurate comparisons to existing 
knowledge. 
 



To provide texts to OntoSem for analysis, a search engine could query the web, which 
was previously discussed as a powerful open corpus; results, in the form of texts and 
meta-data (number of hits, suggested alternate searches, etc.) could be analyzed and 
archived for further data extraction. 
 
In order to setup any experiment, and to evaluate the results in any of the discussed 
methods, a set of tools and application programmer libraries will need to be available.  
Knowledge acquisition for both experimental setup, as well as evaluation of 
automatically generated knowledge is a time consuming and difficult process, which can 
be expedited by the use of user-friendly, custom-tailored tools.  The same is true for the 
creation of manually annotated sentences, or hand-generated TMRs.  In order to produce 
a series of functional tools that works seamlessly with the proposed learner, a solid API 
will need to be created to handle the data backend, and provide standard functionality to 
supplement the semantic annotation provided by OntoSem. 
 
5. Prior Work 

 
Work on the proposed system has progressed in two distinct areas.  Initially, the system 
was developed and tested, with varied results.  However, in the course of development 
and research it became clear that in order to facilitate the development of the proposed 
system, as well as the NLP tools (including OntoSem’s static knowledge resources), a 
solid tools set with supporting API would need to be developed. 
 
5.1 DEKADE 
 
For two years, the DEKADE (Development, Evaluation, Knowledge Acquisition, 
Demonstration Environment) system has been under development to support various 
knowledge-based development and learning tasks.  DEKADE has been designed as an 
immediate, high-level API and toolset for OntoSem and its supporting static knowledge 
resources.  The current version of DEKADE is a custom, client-server architecture, built 
around an API designed to have uniform access to all of OntoSem’s modules and static 
knowledge. 
 
This process was a necessary step in the construction of the proposed system.  In order to 
properly create bootstrapped knowledge for the system, and to extract relevant data from 
both the static knowledge and the results of semantic analysis, the ML component of the 
system needs high-level access to the various components that make up the OntoSem 
environment.  The reasoning behind this is to produce the appropriate tools for the ML 
component to work properly, instead of forcing the ML component into a set of existing, 
“off-the-shelf” tools.  OntoSem is an incredibly complex, and very unique environment: 
no existing tools would be capable of capturing the full scope of detail OntoSem brings to 
the table, hence selecting an existing tool would limit the learning potential of the ML 
component. 
 
The initial task, and indeed the primary motivation to build DEKADE from scratch, was 
to develop an open, and powerful, API. DekadeAPI, written in Java, is an extensible 



library that supports single function calls to access any of OntoSem’s modules, as well as 
simple, yet robust, queries to the static knowledge resources.  To improve the efficiency 
and coverage of these access methods, high-level Java objects have been created as 
wrapper classes to parse the results and present them to the user in an intuitive, easily 
accessible manner. 
 
To further enhance the functionality of these methods, each was extended so that it is 
now possible to call it across an open-socket network connection, allowing the 
DekadeAPI to be usable by any user with an Internet connection.  With this functionality 
available, it was time to construct an interface layer between the existing toolset and the 
user.  The interface had to support the demands of three types of user: developer, 
knowledge acquirer, and researcher (who uses OntoSem as a tool, as it will be in the 
proposed learning system), just as the DekadeAPI does. 
 
Built on Java/Swing technology, the interface’s parent UI frame handles securing the 
connection between itself (the DekadeClient), and the server application (the 
DekadeServer), and populates itself with a series of tabbed panes found in the 
application’s root drag-and-drop folder, registering the browsing capabilities of each 
panel with the others.  The interface was developed to support custom user panes that 
simply append to the interface and integrate with the existing tools. Using standard 
Java/Swing libraries, and custom DekadeAPI GUI extensions, researchers can easily 
populate a panel with custom-built or existing DEKADE widgets, and use them for two-
way communication with OntoSem. 
 
A key component is the interconnection between the various editors and browsers.  In the 
new DEKADE environment, a knowledge acquirer can begin work on a lexicon entry, 
and in a single click inspect the corresponding ontological entry, and then swiftly return 
to the lexicon entry.  The developer can also easily inspect the details of the various 
mappings to static knowledge made by any of the OntoSem processing modules to assist 
in the testing and debugging process of OntoSem. 
 
The current standard version of the DekadeClient environment is supplied with interfaces 
to support OntoSem Stepped Analysis, Lexicon Browsing/Editing, Ontology 
Browsing/Editing, and Fact Repository Browsing/Editing (the Fact Repository is a 
collection of instances of concepts from the ontology, with specific values and 
constraints). 
 
Setting up the DEKADE system has facilitated the experimental process of developing 
the learning system proposed, and will continue to do so.  In addition, the DEKADE 
system has been used in other research areas as well: DEKADE has been successfully 
used in the SemNews system [Java et al., 2006], [Java et al., 2007], a semantic web 
annotation project, cataloguing TMR-level annotations of RSS news feeds created by 
OntoSem.  The system uses OntoSem as its backbone NLP system, and OntoSem’s static 
knowledge resources as a default knowledge base.  Another application, for which 
OntoSem provided the basis, and DEKADE the environment, is EBIDS [Stone, 2007], an 
NLP-based social engineering email detection system. In EBIDS, OntoSem is used 



through DEKADE to semantically analyze incoming e-mail messages and identify those 
of them that can be social engineering (“phishing”) threats. 
 
5.2 The Learner 
 
The solid foundation of OntoSem and DEKADE has provided a means to begin initial 
experimentation in learning on ontological concepts through semantic analysis. Initial 
findings, published in AAAI Spring Symposium, 2007 [English and Nirenburg, 2007], 
demonstrated that such a system was feasible, and even at its earliest stages showed 
promising results. 
 
The first experiment concentrated on learning the meaning of unknown words. One 
simplifying assumption made at the time was that the meaning of the candidate would be 
expressed as a univocal mapping into an ontological concept (in general, SEM-STRUC 
zones of OntoSem lexicon entries can add local constraints to ontological concepts in 
terms of which the meaning of the lexical unit is described, thus making such lexicon 
entries unnamed ontological concepts). As a result, at the time, the experiment was 
effectively constrained to learning ontological concepts. 
 
Ontology learning as a field concerns itself at this time with learning terms, (multilingual) 
synonyms, concepts, taxonomies (by far the most popular topic), relations and rules and 
axioms [Buitelaar et al., 2005]. The methods involved include different combinations of 
linguistic (knowledge-based) and statistical methods but mostly the latter. Among the 
linguistic tools used for this purpose Buitelaar et al., ibid., list, in order of increasing 
sophistication, tokenization, part of speech and semantic type tagging, morphological 
analysis, phrase recognition, (syntactic) dependency structure determination and 
discourse analysis. It is notable that this list does not include a tool that would be 
centrally important for learning by reading – an analyzer that creates disambiguated 
semantic dependency structures for sentences and texts, in which relations between 
elements are ontological and not syntactic and go well beyond the taxonomic 
subsumption relations. Work on extracting small subsets of such relations using largely 
statistical means has been reported (e.g., [Charniak and Berland, 1999] for meronymy, 
[Cimiano and Wenderoth, 2005] for the qualia of the generative lexicon approach 
[Pustejovsky, 1995], causation [Girju, 2002], among others).  OntoSem, however, 
addresses the task of extracting knowledge about a large set of such relations using 
encoded knowledge as heuristics (cf. work by, e.g., [Clark and Weir, 2002] that uses 
essentially statistical methods for estimating selectional restrictions).  
 
Among the sources of knowledge acquisition are machine-readable dictionaries (e.g., 
[Nichols et al., 2006]), thesauri (e.g., [Navigli and Velardi, 2006]), as well as text (e.g., 
[Ogata and Collier, 2004], [Buitelaar et al., 2004], [Cimiano et al., 2005]). The 
experiment used open text but could be extended to treating MRDs and thesauri as 
special types of texts. 
 
 
 



5.3 The Initial Experiment 
 
The initial experiment started with selecting words whose meaning would be learned by 
the system. Next, the system developed a corpus of sentences (from the web) containing 
this word and used OntoSem to generate their TMRs. OntoSem degrades gracefully in the 
face of unexpected input. It is capable of semantically analyzing sentences with a small 
number of unknown words by assuming that the unknown word’s meaning corresponds 
directly to a non-existent ontological concept and then applying relevant constraints listed 
in the knowledge about words syntactically connected with the unknown word to 
hypothesize the constraints on the latter. Note that, unlike the case when all the words are 
known and, therefore, constraints are mutually matched (this is a major mechanism for 
lexical and semantic dependency disambiguation, the core process of semantic analysis), 
in the case of an unknown word the constraints (for example, selectional restrictions) 
must be applied unidirectionally.  
 
From the TMRs containing the new candidate concept, the system collected both the 
inventory of relations and attributes attested for the candidate concept and the inventory 
of values of these relations and attributes. After the candidate concept was thus 
“assembled,” the system compared it with the concepts in the existing ontology to find 
the most appropriate position(s) for it in the multiple-inheritance hierarchy that organizes 
the OntoSem ontology. To facilitate the evaluation of our experimental results, some of 
the existing entries (and the corresponding ontological concepts) were taken out of the 
OntoSem knowledge resources prior to running the experiment; afterward, they were 
compared to the automatically generated new concepts. 
 
The learner uses Google’s SOAP Search API (http://www.google.com/apis/index.html), 
which returns a list of websites containing the unknown word. The content of a specified 
number of these sites is retrieved.  This number can be adjusted if needed to extract a 
larger corpus. Next, an HTMLParser (http://htmlparser.sourceforge.net/) is used to strip 
out tags and unwanted markup, yielding raw text. At the next step, text is divided into 
sentences (using a module of the OntoSem analyzer), and those sentences that do not 
contain the search word are discarded. 
 
The remaining sentences are processed using the OntoSem analyzer that carries out 
morphological, syntactic and semantic analysis. The output from OntoSem is a list of 
TMRs containing instances of a candidate concept corresponding to the unknown word 
and instances of a variety of relations in which this concept participates, such as a case 
role that relates it to an event-type concept instance. Additionally, the TMR may contain 
some values for attributes (unary properties) of the candidate concept. At this point in the 
process there is an option to include human assistance to produce gold-standard TMRs 
from the system’s results (DEKADE would be used if desired here). 
 
The list of properties returned from any one TMR is likely to be small (because only a 
few will be referred to in a single sentence).  The system then has to collate the 
knowledge extracted from processing individual sentences.  Given a list of TMRs, the 
learner searches through each one, finding all properties associated with the instances of 



the candidate concept, and collating them into a single frame for the corresponding 
candidate ontological concept. When collating the values of each property of the 
candidate concept, the system filters out weaker constraints if stronger constraints have 
been attested. For example, if among the fillers of the AGENT-OF property of the candidate 
concept the system finds READ, ACTIVE-COGNITIVE-EVENT and MENTAL-EVENT, it will 
retain only READ because it is a descendent of the other two concepts in the ontology. The 
weaker constraints can, in principle be retained in the OntoSem ontology because the 
latter uses multi-level constraints to support robust disambiguation processes. 
Technically, the constraint read may appear in the SEM facet of the property AGENT-OF in 
the candidate concept while MENTAL-EVENT may appear as the filler of the RELAXABLE-
TO facet of the same property.  
 
The final step in the original experiment was to find existing ontological concepts that are 
most similar to the candidate concept, with the idea of suggesting a place for the new 
concept in the multiple-inheritance hierarchical organization of the OntoSem ontology. In 
general, there are three distinct outcomes: 
 
1. The candidate concept is subsumed by an existing concept (meaning that the original 

unknown word is a synonym of an existing lexical entry). 
2. The candidate concept is similar to an existing concept C, in which case the system 

will create a lexicon entry for the original unknown word and in the SEM-STRUC zone 
of this entry insert a reference to C, with further local constraints added to reflect the 
differences between the candidate concept and concept C. 

3. The candidate concept is sufficiently dissimilar from existing concepts, and should be 
added to the ontology. 

 
The method of using the results of learning sketched above will be included (with an 
optional human validation step) in OntoSem’s knowledge acquisition environment. Two 
strategies were used to create new ontology entries: using genuinely new words (those 
not in the OntoSem lexicon) and using existing words and removing them from the 
lexicon (and concepts used to describe their meaning from the ontology) before the 
corresponding system run. In the latter strategy, the system thus had a gold standard 
concept against which to compare the candidate. In the former strategy, a hand picked 
concept in the existing ontology that was thought to be the most appropriate one to use in 
the description of the meaning of the new word (whether directly, through constrained 
lexical mapping or creation of a new concept) was used.  
 
The initial experiment produced a set of results of four words – hobbit and pundit were 
entirely new to the system and CEO (and its corresponding concept PRESIDENT-
CORPORATION) and song (and its corresponding concept SONG) were temporarily deleted 
from the OntoSem knowledge resources. 
 
For hobbit, HUMAN was selected as the closest ontological concept. Table 1 shows a 
comparison of the selected properties of automatically generated candidate concept for 
hobbit, HOBBIT, and the existing concept HUMAN.  
 



 
Ontological Property Values in HUMAN Values in HOBBIT 

AGENT-OF LIVE 

CREATE-ARTIFACT 

ELECT 

READ 

LIVE 

CREATE-ARTIFACT 

ELECT 

THEME-OF RESCUE 

MARRY 

KILL 

RESCUE 

KILL 

HAS-OBJ-AS-PART HEAD n/a 

Table 1: Comparison of selected properties of HUMAN to automatically generated candidate concept HOBBIT 

for the word hobbit. 

 
Present in many of the automatically generated concepts were a relatively high proportion 
of properties labeled RELATION, which means that the system was not able to determine a 
more precise link (that is, a narrower-defined property) connecting the candidate concept 
with the filler of a RELATION instance.  The OntoSem ontology uses approximately 200 
specialized relations to characterize objects (the sub-tree of properties also contains a 
comparable number of attributes, and one-place predicates). The OntoSem analyzer uses 
the concept RELATION when it determines that two concept instances are related but lacks 
heuristics to specify what the specific relation it is. This over-generalized output is the 
price paid for making sure that the analyzer does not break on unexpected input or due to 
insufficient quality of the existing knowledge resources or decision heuristics. Even 
though the connection on RELATION is relatively underspecified, for the first experiment, 
the system kept this information and used it alongside other constraints in determining 
the distance between the candidate concept and other concepts in the ontology.  
 
Evaluation was based on measuring the ontological distance between the candidate 
concept and all the other concepts in the ontology and then determining a) the difference 
in the distances between the candidate concept and the automatically derived closest 
concept and to the designated hand-picked closest concept; and b) the rank of the hand-
picked concept in the sorted list of closest concepts. Table 2 presents the results of the 
initial experiment.  
 

Word Best Match Selected Match Difference 

pundit 0.800 INTELLECTUAL 
0.679 

0.121 
(15.1%) 

ceo 0.900 PRESIDENT-
CORPORATION 
0.638 

0.262 
(29.1%) 

hobbit 0.900 HUMAN 
0.806 

0.094 
(10.4%) 

song 0.800 SONG 

0.800 

0.000 

(0%) 

Table 2: Improvement of generated concept vs. target concept over growing corpora. 

 
Distances between ontological concepts are measured using the OntoSearch algorithm 
[Onyshkevych, 1997]. OntoSearch finds the “best” ontological path (chain of relations) 
between any two concepts and calculates the weight (score) of each path, which reflects 
the strength of the association between two concepts. The cumulative score for a path is a 
function of its length and of the cost of traversing a particular relation link. For example, 



subsumption links (IS-A and SUBCLASSES) are less costly to traverse than, say, causal 
links. The individual link traversal costs in OntoSearch were trained using simulated 
annealing on a representative subset of OntoSem ontological relations. OntoSearch has 
been used to provide statistics-based heuristics to supplement static knowledge resources 
during the operation of the OntoSem text analyzer. For example, to help disambiguate the 
input "The doctor performed the operation", Ontosearch examines the ontological 
connection between the non-title sense of doctor and the two senses of operation: 
PERFORM-SURGERY and MILITARY-ACTIVITY and returns the following link: 
 
ONTOSEARCH(DOCTOR, PERFORM-SURGERY)  0.8 
DOCTOR  AGENT-OF   PERFORM-SURGERY  
 
(In other words, even though the ontology may not overtly contain the information that a 
doctor performs surgeries, this information is virtually there and can be derived by the 
analyzer using OntoSearch.) The OntoSearch score for the DOCTOR/MILITARY-ACTIVITY 
relationship is much lower, so that the PERFORM-SURGERY sense is preferred. 
  
As an evaluative tool, OntoSearch shows both a correctness metric, as well as a measure 
of improvement in results given different sizes of a dynamically produced relevant text 
corpus.  As the ultimate goal of this research is developing a learning-by-reading 
capability, this provides data for testing the hypothesis: whether indeed the more the 
learner reads, the more it useful knowledge it obtains. 
 
5.4 Refining the Comparison Metric 
 
As a means of improving the above results, a new similarity metric was developed.  This 
metric was designed specifically to judge the distance between two concepts without 
calculating a minimal-weight path between the concepts (which is the method used by 
OntoSearch and which was an obvious drawback because such a path was assumed to 
exist in the ontology).  This change allowed for the candidate concept to not be expected 
to exist in the same ontology as the concepts it is being compared to. 
 
This metric was been designed to look at each property in the current OntoSem ontology 
and compare concepts on the basis of the values of each property.  A vector, whose 
length is the size of the property inventory in the current ontology, is constructed, each 
element’s value weighed between 0 and 1 (see explanation of weight assignment below). 
 
In constructing a metric for comparing two concepts, the number of property names that 
they have in common as well as a measure of similarity of value sets for the shared 
properties were taken into account. A simple average of these two values was taken to 
produce a similarity value. Let C1 denote an existing concept and C2, the candidate 
concept; let Pt be the total number of properties defined by both concepts (union of 
properties) and Ps , the total number of properties shared by both concepts (intersection 
of properties); and let Vi denote the vector of computed value pairs for all values in C1 
and C2 with property I; Viv stand for combined results of value set comparisons for 
property I; and Vgt , for the total number of Viv values greater than 0.0. The system can 



then compute a value of the intersection of the sets of properties defined for each of the 
compared concepts as P = Ps / Pt and the quality of the intersection of value sets for the 
defined properties as 

V =
Vivi= 0

Ps

Vgt

 

 

The simple averaging of the two values yields: Similarity = (P + V)/2.  
 

This improvement to the comparison metric also needed attention to the issue of 
individual value comparisons. Here, different metrics needed to be developed for 
different types of property fillers (numbers, numerical ranges, symbols, ontological 
concepts and their sets, etc.) Table 3 shows a partial list of property comparisons, with a 
brief explanation of how a result was determined; Figure 1 specifies how numerical 
ranges are compared. 
 
Value 1 Type Value 2 Type Comparison Metric 

Text Text Case-insensitive character-by-character comparison 

Text Number (literal) No match 

Number (literal) Number (literal) Is Num1 within (Num2 x TOLERANCE) distance of NUM2? 

Number (literal) Number (relative) Match 

Number (literal) Number Range Is Num1 inside Range2? (Range2 is expanded by TOLERANCE) 

Number (literal) Concept No match 

Number (relative) Number (relative) Is Num1 within (Num2 x TOLERANCE) distance of NUM2? 

Number (relative) Number Range Match 

Number (relative) Concept No match 

Numerical Range Numerical Range Are ranges equivalent?  See Figure 2 

Numerical Range Concept No match 

Set Concept No match 

Concept Concept Calculate distance to nearest common ancestor 

Table 3: Value type comparison overview.  TOLERANCE is defaulted to 10%. 

 

 
Figure 1: Three cases for numerical range comparison. 

 

Using the new metric, the system obtained the results summarized in Table 4. The last 
column in the table, Improvement, compares the results of using OntoSearch metric and 
our latest metric by comparing the distances between the system-generated and the 
human-determined best match using the two metrics. 
 

 

 

 

 

 



Word 
Sample (no. of 

sentences) 

Property Instances 

Extracted 

Best 

Match 
Desired Match 

Differ-

ence 

Impro-

vement 

pundit 453 36 0.458 INTELLECTUAL 

(0.450) 

1.75% 13.35% 

CEO 552 23 0.448 PRESIDENT-

CORPORATION 

(0.417) 

6.92% 22.81% 

hobbit 1458 157 0.520 HUMAN (0.493) 5.19% 5.21% 

song 339 12 0.446 SONG (0.36) 17.71% 17.71% 

Table 4: New comparison metric results. The Sample column lists the number of sentences containing the 

word that were used as the corpus. Those sentences were processed and yielded the number of property-

value set instances listed. These property-value set instances were combined into a candidate concept, and a 
best match was found for it using the new metric. The match selected by a human is listed in the Desired 

Match column. The Difference column shows the difference in the similarity scores between the system 

and the human user. The Improvement column compares new results with analysis using the OntoSearch 

metric. 

 
In three out of four cases there was improvement.  In the case of song, the new metric 
yielded worse results. This was attributed to the small size of the set of the automatically 
generated property/value instances that formed the candidate SONG concept. OntoSearch 
imparts more weight to subsumption properties (IS-A, SUBCLASSES, which are 
semantically weaker than other properties) than the revised metric, and these properties 
were used predominantly to navigate the ontological hierarchy in the absence of more 
specific properties, resulting in a deceptively high score.  The new metric, on the other 
hand, does not take these into account (very few actual sentences directly invoke 
subsumption relations), and therefore found very little useful information in SONG, 
resulting in a “decreased” quality of match (which is actually much more accurate than 
results using OntoSearch).  
 
5.5 Combining Results 
 
To further prove the usefulness of the proposed system, the results of a series of other 
parallel learning experiments were incorporated into the results obtained from another 
run of the system.  Although not much was changed in the way the system produced 
results, a new batch of target words were selected.  The first parallel experiment was 
designed to extract attribute values for existing concepts from an open corpus.  This 
experiment differs from the proposed system in that it seeks to learn more literal values 
(instead of relations between concepts), and further it seeks to learn these values on 
existing concepts (to validate, clarify, and expand on existing knowledge).  However, the 
general methodology was easily adapted to bolster the proposed learning system. 
 
The OntoSem ontology was used as the basis for building search queries; each 
ontological property of the attribute (unary) type is associated with a list of its possible 
English realizations (obtained from the system’s lexicon). A search query was created by 
combining this list with either a list of words, for example, for the concept ELEPHANT and 
the attribute WEIGHT, the following query was produced: (elephant) AND (weigh OR 
mass OR heavy OR heaviness). Note that since Google matches partial strings on queries, 
the search string weigh will match with many strings such as: weigh, weight, weighing, 
weighs, weighed, etc. 



The result of the search was a list of sentences matching the query. These candidate 
sentences were then processed further by one of two different methods depending upon 
whether they contained measurable (e.g., weight), or non-measurable (e.g., color, whose 
values are represented in the OntoSem ontology by a set of primitive literals, such as 
green) attributes. In the latter case, a count was produced for the occurrences of each of 
the literals in the data. Table 5 illustrates the results for several runs aimed at empirical 
validation of existing ontological values.  These searches were done on 500 web pages. 

Concept/ 

Attribute 
Web Mining Results 

Existing ontology 

has 

ELEPHANT/ 

COLOR 

white: 283; pink: 188; blue: 

92; black: 64;  red: 61;  

gray: 45;  green: 39;  

yellow: 39;   brown: 23;  

purple: 13 

black  

brown  

gray 

tan  

white 

SPINACH/ 

COLOR 

ed: 509  green: 297  black: 

246  white: 227 orange: 

129  blue:125 

green 

GRATER/ 

SHAPE 

conical: 33;  circular: 22;  

curved: 27; cylindrical: 23; 

rectangular: 23; hexagonal: 

12 

parallelepiped 

sheetlike 

trapezoidal 

Table 5: Learning Literal Attribute Values 

 

In the case of scalar attributes, each sentence in the results was searched for value-unit 
pairs.  For example, the sentence “The elephant weighs five tons and is ten feet tall” 
contains two such pairs: five tons and ten feet.  If the property being searched for is 
WEIGHT, then five tons is accepted a valid measure, since tons is a weight measure, while 
ten feet is rejected since weight is not measured in feet. All units were then converted 
into metric units, which is the standard in the OntoSem ontology. In some special cases, 
stop lists were generated to eliminate any errors that might be introduced by such 
conversions. Care was also taken to find ranges of values. If a sentence said “Elephants 

weigh between 4000 and 9000 kilograms.” then both 4000 kilograms and 9000 kilograms 
were returned as valid elephant weight values.  If the purpose of the data mining run is to 
determine constraints on a property of a newly learned concept, the range of values 
mined from the Web were compared with the range of values for the attribute in question 
within the definition of the concept in question in the OntoSem ontology. Table 6 
presents a small sampling of results based on a search of 200 web pages for each concept-
property pair.  

Concept Attribute 
Range Mined 

from the Web 

Range in 

Ontology 

SQUASH LENGTH 
0.025 – 9.754 

(meters) 

0.012 – 0.024 

(meters) 

TUNA WEIGHT 
0.128 – 817 

(kilograms) 

2 – 820 

(kilograms) 

ELEPHANT WEIGHT 
0.227 – 10866 

(kilograms) 

3500 – 13000 

kilograms 

Table 6: Concept-Property Pairs for Scalar Attributes 

 



The results of this first parallel experiment were combined with the results of preliminary 
work on the proposed system, with positive results.  Adding attribute values to a set of 
relation values tended to improve the quality of the learned concept, and will be kept in 
mind as the system progresses.  Table 7 shows some results that were found; in some 
cases the results improved with attributes, in others the results suffered.  Discussion can 
be found in [Nirenburg et al., 2007, unpublished]. 
 

Word A B C D 

Brontosaurus DINOSAUR 0.607 0.607 0.715 

Cherimoya FRUIT-

FOODSTUFF 

0.607 0.646 0.637 

Depose DEPOSE 0.999 (ALL) 0.999 (ALL) 0.999 (ALL) 

Diplodocus DINOSAUR 0.612 0.612 0.546 

Obey OBEY 0.518 0.646 0.518 

Pledge PROMISE 0.516 0.516 0.760 

Spartan MILITARY-

ROLE 

0.574 0.574 0.754 

Stegosaurus DINOSAUR 0.720 0.682 0.759 

Syrup PLANT-

DERIVED-

FOODSTUFF 

0.646 0.573 0.760 

Triceratops DINOSAUR 0.643 0.721 0.849 

Wigger SOCIAL-ROLE 0.526 0.635 0.849 

Table 7: Results of Combined Experiments A and C on Eleven Unknown 

Concepts, with clustering 

A: The targeted “correct” concept (existing in ontology).  Repeated for clarity. 

B: The best distance to the target, using attribute and relations (by OntoSearch 

comparison standards). 

C: The best distance to the target, using relations and the best attribute value 

cluster (by OntoSearch comparison standards). 

D: The best distance to the target, using relations only (by OntoSearch comparison 
standards).  Repeated for clarity. 

 
The second experiment, run in parallel, was designed to use statistical data based on web 
searches to identify the number of possible senses of a word (in particular, verbs). As this 
experiment already used the case roles AGENT and THEME that are among the properties 
processed in by the proposed system, the integration of the two experiments was natural. 
 
In one experiment, the system was able to append the following property-value pairs to 
data already constructed for the unknown term deport: 

 

1.   <relation type="AGENT" value="NATION"> 
2.   <relation type="AGENT" value="HUMAN"> 
3.   <relation type="AGENT" value="PROCEDURE"> 

4.   <relation type="AGENT" value="ICE"> 
5.   <relation type="AGENT" value="SOCIAL-ROLE"> 
6.   <relation type="THEME" value="HUMAN"> 

7.   <relation type="THEME" value="NATION"> 
8.   <relation type="THEME" value="CITY"> 
9.   <relation type="THEME" value="CITIZEN"> 

10. <relation type="THEME" value="CRIMINAL"> 
 

Again, as with the previous experiment, results were mixed, but on the whole positive.  
Combining results from two completely independent experiments into the proposed 



learning system, although no outstandingly positive results were produced, did have a 
very positive benefit: the learning system was shown to be lacking in certain areas, and 
was proven to be positively influenced by expansion into those areas. 
 
6. Proposed Plan of Work 

 
To begin using, and evaluating the proposed system, a collection of TMRs must be 
generated from the open corpus.  Phase 1 of implementing and testing the proposed 
system includes a the implementation of a sub-system to take a requested unknown word 
as input, query the web for resulting texts, pass these texts through the semantic analyzer, 
and archive the resulting TMRs in a relational database.  This sub-system will require a 
supporting database, with schemas supporting the TMR format and allowing easy query 
over the various components of interest in a given TMR (common search queries would 
include searching by keyword in the original text, searching for properties of an instance 
generated from a keyword, and searching for all TMRs containing instances of a concept, 
to name a few). 
 
This sub-system will need to be setup to be “always running”.  It should be able to take 
each input word and append them to a queue, to be queried for and analyzed after the 
current tasks are completed.  In this way, the system can be buffered with a large list of 
unknown, and set to work over time, while other tasks are being simultaneously worked 
on. 
 
Phase 1 of the experiment must also involve careful selection of input words.  At this 
point, the goal is to vastly improve the quality of learned material by tweaking various 
stages of the learning process, and incorporating new filters and stages to eliminate as 
much noise as possible.  Selecting words with broad coverage of usage will assist in 
pointing out holes in the learning algorithm.  Phase 1 should conclude with a much more 
solidly constructed set of learned concepts, which have been placed in the ontology with 
a high degree of accuracy. 
 
Phase 1 will be evaluated mostly by hand, throughout its process.  Gold-standard 
concepts will be created through the DEKADE interface, and the automatically generated 
concepts will be judged against them.  Throughout this process, the method of judgment 
will also be improved over the one previously described.  Phase 1 will conclude when the 
concepts created automatically have a high degree of similarity to the hand crafted ones, 
and the similarity metric is proven to be accurate as well. 
 
Phase 2 of the research will involve implementing the “spiral learning method”.  The goal 
of this phase is to learn new concepts automatically, introduce them to the ontology, and 
use the new knowledge to learn another set of concepts.  Phase 2 will have to be done in 
two parts, in order to show improvement.  To begin, two sets of semantically related 
words will need to be selected: one as the original set of unknown words to be learned, 
and the second as subsequent set of unknown words, whose definitions are intrinsically 
dependant on the first set. 
 



The first part of Phase 2 will involve using the sub-system to and automatic learning to 
extract the meanings of all words from both sets.  The meanings of the second set will be 
stored for later.  A copy of the first set will be made, and then manually corrected.  The 
second part of Phase 2 involves adding the uncorrected set of knowledge from the first 
batch of words to the ontology, and then re-learning the second set of words.  The 
uncorrected set will then be replaced with the corrected set, and the second set of words 
will be re-learned again. 
 
Phase 2 will conclude with an examination of the three resulting sets of learned words.  
The quality and correctness of the sets produced using the uncorrected and corrected set 
of prerequisite words should be improved over the original set of learned words without 
the prerequisite knowledge.  Further, all four sets of automatically learned words will be 
evaluated as in Phase 1 (both manually and automatically). 
 
Phase 3 will involve production of TMRs of texts, which include unknown words from 
the second set of Phase 2.  The TMRs will be produced once without the knowledge 
learned, once with the knowledge learned, but without the prerequisites, once with the 
knowledge learned (along with the prerequisites), and once by hand.  The quality and 
correctness of the four sets of TMRs will be judged, and should be shown to improve as 
the knowledge improves. 
 
7. Work By Others 

 
Work in the fields of NLP (as a theory), ML (as a theory), semantic annotation, and 
automatic semantic learning, are all relevant foundations of the work proposed in this 
document.  At this point, a certain amount of publications in related fields have been read 
and annotated.  These texts are presented below (note that the annotations are written 
informally, are intended as summations of the text and are intended to be in an easy-to-
read format); following the annotated texts is a list of texts that must also be digested as 
work continues. 
 
7.1 Annotated Papers for the Core Learning Experiment 
Automatic Ontology Learning: Supporting a Per-Concept Evaluation by Domain Experts 
[Navigli et al., 2004] 
 

The paper primarily focuses on two methods of evaluating automatically learned 
ontologies: a quantitative and a qualitative method. The first half of the paper 
describes (in brief) the OntoLearn system (no direct reference is given), which 
appears to be a hybrid ML and NLP ontology learning system. Starting with a 
WordNet/FrameNet springboard, a large corpus of domain specific text is 
scanned; keywords are extracted, and made into concepts using NLP. They use an 
algorithm, known as structural semantic interconnections, to derive the meaning 
of a complex term (such as business plan) from the meanings of its constituent 
terms (business and plan). The ontology is then augmented (business plan 
becomes a type of plan) and non-domain related material is cut. 
 



Quantitative analysis is performed by a manual verification of the created 
concepts. Domain experts are used to verify that the concepts created appear to be 
sound... this is problematic as many domain experts are not ontologists. 
 
This leads to the qualitative analysis; glosses are created for each concept, and 
these are given to a domain expert who votes on the quality of the information. A 
gloss is natural language snippet, generated from the concept. This is done by 
defining a grammar consisting of rules for each different property in the ontology. 
Each rule defines how to output some readable natural language, given the 
concept, slot and filler. These glosses produce something reads reasonably well, 
allowing a domain expert with no knowledge of ontologies to verify the data is 
accurate. 

 
Building Concept Representations from Reusable Components [Clark and Porter, 1997] 
 

The authors present a method for abstracting interactions between frames into 
groups (called components) that detail how a cluster of concepts interacts (sort of 
like a script). Using an ontology-based approach, frames are created, and are 
populated with property/value pairs. Inheritance (even multiple inheritance) is 
used to further define frames. To specify how multiple frames can similarly 
interact with a system, a component is defined. The example given is of the 
component containment: this component describes a container, a contained-
object, and a portal. The interactions between them are defined in the component, 
and then other concepts are mapped to them; a human can be a container, with 
food as the contained-object, and mouth as the portal. By simply connecting these 
three concepts to the generic concepts of the component, human has now 
inherited the (potentially complex) structure of containment. 
 
Using this methodology, the authors present a way to automatically build concept 
representations, and set the task to question answering. A rather lengthy example 
is given, where the question is "what is the cost of the equipment required for 
microbe-soil-treatment". Using a structure called an access-path (a sequence of 
variable pairs, where evaluating one allows for evaluation of the next, to the end), 
the authors create a system that starts with a known concept, and enhances a 
component graph (using defined components) by traversing an access path to the 
answer. 
 
The example given finds the component for treatment, and uses the microbes and 
soil as fillers for theme and patient. Looking at the properties of treatment, they 
find that it has two events, get and apply. Apply is narrowed down (through 
selectional restriction on the components) to mix (mix has a patient soil, no other 
child of apply does). Looking at the properties of mix, it has an instrument mixer. 
Mixer is further narrowed to rototiller (as it mixes soil, and no other mixer does), 
and the cost of property of rototiller is $200. Thus the answer to the question is 
$200. 
 



Although their system is not formally evaluated in the paper, the example gives a 
strong argument towards the usefulness of a system that is constructed using this 
methodology. 

 
Counter-Training in Discovery of Semantic Patterns [Yangarber, 2003] 
 

This paper describes work in semantic pattern classification; the authors are 
attempting to extract the relevant semantic patterns from a corpus of documents, 
and simultaneously select which documents should fall into which categories. 
This is done by starting with a corpus, and selecting a set of categories: each 
category is given a seed pattern to help with semantic classification. 
 
At the base level, the corpus is preprocessed several times. Name-entity 
recognizers are run to replace all names with a few generic tokens (person, 
location, etc.). A syntactic parser is run to produce a dependency tree for each 
document. The dependency trees are normalized to further reduce noise and 
variation, and finally a series of tuple are extracted for each clause (containing the 
subject, verb and object). The seeds provided for each class are in the form of 
these tuples: as an example, the experiment was run on Wall Street Journal 
articles, one class to put documents in was labeled Management Succession, and 
its seed patterns were [Company appoint Person] and [Person quit]. Using these 
seed patterns, the learner can attempt to divide the set of documents into 
Management Succession documents, and not (or in the case of the basic learner, 
between Management Succession, and the n other classes each with their own 
seeds). After doing so, tuple matches can be found, which allows the learner to 
further understand which tuples are relevant to the class, and find new documents 
(or shuffle existing ones around) to properly categorize them. 
 
The problem with the basic learner described (and the main focus of the paper) is 
that the learner has no obvious stopping point. It will continue to learn until some 
hard coded halt is called, or it has degraded its quality of learning so much that 
the precision and recall of the classified documents will suffer drastically. To 
counterbalance this, the authors propose using multiple learners for each class 
simultaneously. At each iteration, learners can tag one (or some x number of) 
document(s); this claims these documents as part of the learners specific class. 
They can be used to further grow the seed tuples, but for all intents and purposes 
they are claimed and can’t be claimed by other learners (of course with enough 
weight behind the tuples they can be shuffled, but in principle they have found a 
home). Once the learners can’t pick any more they stop learning. Once all learners 
but one have stopped, the algorithm halts. This provides a solution to the 
degradation of learning quality, and in the experiments showed promising results. 

 
 
 
 
 



Discovering Knowledge in Texts for the learning of DOGMA-inspired ontologies 
[Reinberger and Spyns, 2004] 
 

The authors introduce the problem of learning semantically rich ontology 
knowledge from text, and describe some work done in the field, and give some 
discussion on this differences (in both execution, and results) of using an 
automated, versus a domain-expert enhanced method to ontology learning. They 
make a detailed list of tasks that are potentially involved in ontology learning, 
which include: 
 
-collecting and preprocessing a corpus 
-discovering sets of matching words and expressions 
-validating these sets through human intervention 
-discovering sets of semantic relations 
-validating these sets 
-formalizing the learned knowledge 
 
The DOGMA (Developing Ontology-Guided Mediation for Agents) ontology 
system is introduced. There are several methodologies behind the DOGMA 
approach that define the system: "a text is representative if it embodies by 
definition or by facts relevant domain knowledge". Also, it is pointed out that a 
difference between "must" and "may" when modeling a law is very important. 
 
For the experiment directly, two assumptions are made: selectional restrictions 
and co-composition are assumed in the texts. They use a shallow syntactic parser 
(which provides tokenisation, POS tagging, etc.). They also chose to use a 
medical domain, particularly Medline, and extracted two corpuses: one with texts 
matching "hepatitis A" and "hepatitis B", and a second matching "blood". Both 
corpuses contained several million words. 
 
After syntactic tagging, a clustering algorithm produces a set of verb-term 
relations. They are organized into classes, and are associated with a different term 
each. The clustered terms are now known to share a semantic relation, but finding 
that information requires a second step. Prepositional structures from text bearing 
the clustered terms are also clustered. The type of relation can now be extracted 
(if the preposition is specific enough). Overall, the experiment yielded between 
3%-17% precision, and between 9%-41% recall. 

 
How Similar Is It? Towards Personalized Similarity Measures in Ontologies [Berstein et 
al., 2005] 
 

The authors survey the field of ontological similarity measurements, and identify 
two broad categories: edge based similarity measures, and node based similarity 
measures. Edge based methods follow the edges from one concept to the other, 
penalizing each move. This is similar to the method OntoSearch uses, however 
the authors noted (obviously having not heard of OntoSearch) that this method 



has a primary flaw: each edge has a similar weight, and can thus cause odd results 
when traversing paths that are less important than others. However, they did point 
out that this method is the most obviously logical one, when dealing with 
ontologies of easily taxonomized classes (such as animal kingdoms). The second 
method, node based, looks at the defined properties of the node and compares 
them with other defined properties. The authors mention that often this method is 
similar to bag of words, and thus has a flaw that it the properties are being 
compared as literal strings, and similarities such as ontological closeness are not 
being observed. 
 
After identifying the main methods of similarity calculation, the authors present 
five published means, and conduct an experiment. They present human subjects 
from various fields with lists of concepts (in context), asking them to rank their 
similarity, thus providing a gold standard. Then they ask the same of the five 
metrics, and compare the results. They found that overall the humans did not 
completely agree, but neither did the metrics. In fact, they were able to cluster the 
apparently disparate results, showing that the disagreements made by the humans 
and by the algorithms were very similar. They concluded that the best method for 
similarity construction must be personalized to your application. 

 
Investigating Semantic Knowledge for Text Learning [Ankolekar et al., 2003] 
 

The paper describes several experiments attempting to combine features found in 
an ontology with word feature sets when applied to text-classification problems. 
The researchers wanted to know if adding in features from an ontology would 
increase the amount of properly classified documents. 
 
For text classification, they used a series of Bayesian methods: Naive Bayes (or 
zero feature) classifiers, 2-feature classifiers (where the features were extracted 
from standard word feature extraction methods... chi-squared, etc.), and 2-feature 
classifiers (where the features came from relations in a specially constructed 
ontology). 
 
The ontologies were hand-made to suit the domain texts (although the authors 
admitted that some of the results could be skewed by improper domain knowledge 
used to create the ontologies). Relations were kept as generic, meaning that no 
specific relations were applied between concepts; just the fact that a relation exists 
(so this created a feature) was all that was noted. 
 
Overall, the addition of an ontology for feature extraction provided better results, 
however, when applying those features, along with traditional extraction methods, 
the classification results were not as desirable. The authors verdict is the use of 
ontologies for feature extraction in text classification exists, but the ontologies 
must be tailor made to the text documents in order to be of assistance. 

 



Joint Learning Improves Semantic Role Labeling [Toutanova et al., 2005] 
 

The authors present a method for improving semantic role labeling by building a 
joint model of argument frames, which include features that model the 
interactions of the frames into log-linear models. Their goal, given a sentence and 
target verb, is to return all fillers of semantic roles, appropriately labeled. The 
existence of a syntax parser is assumed (so their experiments rely on the 2004 
release of PropBank, which has syntactic trees already annotated). 
 
The authors divide the task into two subtasks: identification, where they classify 
nodes in the dependency tree as either an argument, or a non-argument, and 
classification, where all arguments must be labeled with their correct semantic 
role. The authors create a dynamic programming algorithm for labeling. After 
creating all local models (models that label nodes in the tree independently of 
other nodes), they can be combined to form joint models (by concatenating 
templates of features together). 

 
Learning Semantic Classes for Word Sense Disambiguation [Kohomban and Lee, 2005] 
 

The authors present an alternative method to the WSD problem: that of converting 
a word instance into a generic semantic class. The authors use three classifiers, 
and combine their results in a voting, and weighted voting system, to select the 
resulting semantic class for a word sense. 
 
Using a publicly available corpus (SemCor), and task data (Senseval English), the 
three classifiers were constructed: the first used local context (n words to the left 
and right), the second used parts of speech (n tags to the left and right), and the 
third used syntactic relations with the word. In the case of the third, syntactic 
patterns are either collocation (features that connect one word to another) and 
relational (direct grammatical relations between words). 
 
The results of the experiments showed promise, being on par or slightly improved 
in the area of recall against previous, completely different attempts to classify 
words in the task set (~65%). 

 
Learning Taxonomic Relations from Heterogeneous Evidence [Cimiano et al., 2004] 
 

The paper presents four methods of automatically learning is-a relations for a 
specific domain (travel in this case), evaluates each method against an expert 
created gold standard, and then shows how combining the methods produces 
significantly better results. 
 
The first method, using Hearst-patterns in a large text corpus, is done by scanning 
the text, looking for matches to NP0 such as NP1, and other such patterns. The 
text has to be POS tagged, at which point the frequency of such patterns (which 
was quite low) can be used to construct reasonably accurate is-a relations. 



 
The second method, using hypernymy in WordNet, is performed by calculating a 
weighted overall distance between all taxonomic paths between the two target 
concepts. If a hypernymic path exists, WordNet is claiming an is-a structure. 
However, this has to be taken with a grain of salt, as the authors point out, when 
attempting to construct a domain specific ontology. WordNet is too general, and 
ambiguity in senses led to the authors having generally poor results from this 
method. 
 
The third method, vertical-relations, is one where two concepts share root words, 
and one is modified with adjectives, thus indicating an is-a relation. The example 
given is conference, and international conference. Using this method, although 
quite simple, had very high precision, but very low recall. 
 
The final method, using the GoogleAPI to query for Hearst structures and count 
the frequency of them had decent recall but low frequency. In this method, each 
pair of concepts created a series of Google queries, e.g. T1 such as T2. The 
frequency of the results was weighed against the frequency of just a search on T1 
to produce a reasonable estimation of how closely T1 and T2 were related. 
 
The authors then took all four methods, and combined them in two ways, taking 
the mean of the results of the four values above, and one in which they took the 
maximum of the four results. The difference between these two strategies was 
negligible, however either one did improve over each of the previous methods 
alone. 

 
Measuring Semantic Similarity by Latent Relational Analysis [Turney, 2005] 
 

The paper describes a method of comparing similarity behind the semantic 
meaning of two concepts using latent relational analysis. Latent relational analysis 
is a process that looks at the frequencies of relational words and phrases (such as 
of, for, at), and constructs a sparse matrix from them. SVD is run on the matrix 
and the results are combined to produce a 0 to 1 value of similarity. 
 
The idea is to be able to judge how similar two word pairs are to each other; for 
example mason:stone and carpenter:wood have highly similar relations. 
 
The system works as follows: given three inputs, a search engine with a large 
corpus, a thesaurus of synonyms, and an efficient implementation of SVD, each 
word pair is expanded to multiple word pairs using synonyms from the thesaurus 
(this results in 1 original word pair, and 2n alternate word pairs, n synonyms for 
each original word). 
 
For each of the alternate pairs associated with an original pair of word, the search 
engine is queried for the number of phrases that start and end with the alternate 
pair of words. The top scores (3 in the experiment) are retained. 



 
For all pairs, search the corpus for phrases starting and ending with the pair of 
words; these phrases denote the similarity among the pairs. Now, replace the 
intervening words in each phrase with unique wildcards; these wildcards create 
patterns... the top m patterns (4000 in this case) are retained. 
 
The sparse matrix is constructed by making each pair (and its inverse) a row, each 
pattern (and its inverse) a column, and each cell the frequency of that pattern in 
that pair. 
 
Entropy is calculated, and then SVD. Now, any two pairs A:B, C:D can have their 
similarity calculated by taking the average of the cosine values of each row 
containing A:B, and each row containing C:D. This value is the LRA of A:B-C:D. 
 
Overall, on SAT level questions, LRA performed as well as the average college 
bound high school student (57% accuracy). 

 
Measuring the Specificity of Terms for Automatic Hierarchy Construction [Ryu and Choi, 
2004] 
 

In this paper the authors describe a method for automatically constructing 
ontological hierarchies of words by assigning a specificity value to the words. The 
assumption is that a word that is both similar to another, and more specified, is a 
child of the other word. The method involves producing a positive real number to 
represent the specificity of a term X. The system uses three modules, or managers, 
to produce a specificity-based ontology: the term manager contains a list of all 
terms in the corpus, and evaluates the specificity values passed to it by various 
methods. The statistics manager calculates various statistics on the corpus and 
provides them where needed. The specificity manager provides the calculations of 
specificity described below. 
 
Using a corpus of medical texts, and focusing on a sub-tree of the MeSH 
thesaurus, the authors develop several methods of calculating specificity, and 
apply it to a gold standard human created ontology for the target terms (436 
disease names). A domain specific corpus like this one has its own feature sets; 
adding new features to existing terms creates more specific terms. 
 
To calculate specificity, composition and context can be used. Composition 
means the parts of the term produce the meaning of the term. Context means the 
distribution of surrounding words as compared with the context of known terms 
produces a meaning of the term. 
 
In one method, the authors examine how words like diabetes mellitus must be less 
specific, and therefore a parent of, words like insulin-dependent diabetes mellitus. 
This method proves to fail in places where semantically the meaning is in no way 
similar to the word count of the unit words. 



 
The second method takes this shortcoming into account, and uses a parser to 
attempt to extract a more meaningful specificity through semi-semantic methods. 
This method does prove to be significantly better, but also fails to capture certain 
phenomena that the first method picked up on. 
 
The final method, a hybrid of the first two, assigns a higher specificity when both 
methods return high specificity. This method had the highest overall accuracy, 
being over 80% similar to the gold standard. 

 
Ontology Express: Statistical and Non-Monotonic Learning of Domain Ontologies from 

Text [Ogata and Collier, 2004] 
 

The authors present a system of extracting taxonomies of domain specific 
ontologies through statistical analysis of related corpora. They present many 
common sense approaches with in-house terms; i.e. typing information refers to 
finding the type, or IS-A, of a concept. The name of each concept (or semantic 
class) is given as the name of the type of entity being learned in the corpora. 
 
The goal is to facilitate construction of ontology trees, but in no way to fill 
concepts with meaningful property/values. The work is not meant to replace 
domain experts, nor do the authors claim that IS-A relations among assumed 
knowledge will be learned (if it is not in the text specifically, it will not be added 
to the ontology!). 
 
Methods used include finding definitions: token name is a type name. 
Exemplification: token name and other type name. Exception: type name other 
than token name. There are multiple heuristics used for each method. 

 
Ontology and Lexicon Evolution by Text Understanding [Hahn and Marko, 2002] 
 

This paper presents a method of simultaneously learning a new semantic and 
corresponding lexical concept through text understanding. The authors 
syntactically parse the text, and using a semi-semantically rich lexicon, and a 
method similar to selectional restrictions, attempt to identify where in the is-a 
hierarchy a new term belongs, and then map a lexical entry to it. 
 
The example given is: The R600MX of the company Vaio costs approximately 
1600 Euros. In the example, the word Vaio can be syntactically parsed as a noun 
or an adverb. Using the existing semi-semantic rules, only the noun is valid when 
taking in the restrictions of company (for the noun) and costs (for the adverb). 
Seeing as noun is the only option, Vaio is parsed as a company type, and an is-a 
relation is created. Using this same methodology, R600MX is seen as a product. 
The methodology was tested on domain specific texts using a domain-specific 
knowledge base. 

 



Semantic Role Labeling Using Different Syntactic Views [Pradhan et al., 2005] 
 

The authors present a way to enhance automatic semantic role labeling with 
SVMs by extending the feature sets used and by using different syntactic parsers 
(or views) in a complimentary way. 
 
The authors started by introducing a baseline system, constructed using the 
Charniak syntactic parser. The corpus used was the 2004 release of PropBank 
(which is constructed from semantically hand-labeled Penn TreeBank excerpts). 
The baseline system had a series of features defined (to be used by the support 
vector machine for class or role labeling). Features included such things as 
predicate lemma, voice, position of the constituent in relation to the predicate, etc. 
Three tasks were used to judge performance: argument identification (identifying 
constituents in a sentence that are semantic arguments to the predicate), argument 
classification (assigning argument labels to arguments of a predicate) and a 
combination of the first two tasks. 
 
After creating and judging the baseline, a variety of experiments were conducted, 
which on the whole showed improvement over the baseline. More features were 
added to the feature set. Features in the feature set were pruned to fit the problem 
better. And most interestingly (and the main focus of the paper), two other 
syntactic parsers were used in place of the Charniak parser: Minipar, and a 
Chunk-based parser were implemented. Each parser had nuances that were dealt 
with by the researchers; the three parsers combined with expanded and filtered 
feature sets were able to more accurately label semantic features than the baseline 
alone. 

 
7.2 Annotated Papers for the Development of NLP Tools 
 
ConceptNet - A Practical Commonsense Reasoning Tool-Kit [Lie and Singh, 2004] 
 

A full-blown treatise on ConceptNet, the authors cover from start to finish 
everything there is to know: conception, implementation, comparison, and 
evaluation. ConceptNet fills a void in the current pile of large semantically 
annotated corpora but emphasizing common-sense semantic links. Starting with 
the Open Mind Common Sense corpus (which details such things as: getting fired 
means not having money, which is used for food and shelter, which are necessary 
to survive... thus getting fired may suggest feelings of fear, anger and sadness), an 
online effort compiling fill-in-the-blank sentences about common sense world 
data from volunteer users around the world, ConceptNet has crunched this data 
into a semantic ontology (extracting expressions, normalizing them, the relaxing 
property/value pairs as needed). The resulting data structure consists of 1.6 
million edges and over 300,000 nodes (semi structured English fragments, which 
are related through an ontology of 20 semantic relations). 
 



In the meanwhile, a NLP (based on MontyLingua) system has been developed to 
assist researchers in using the ever-growing corpus of semantic common sense. A 
series of API-level functions (FindPathsBetweenNodes, GetContext, 
GetAnalogousConcepts) allow the researcher to scan the data in a variety of ways, 
mostly from the point of view of an input sentence or text. Finding relevant 
concepts, formulating analogies (apple and cherry share the same back-edges: 
sweet, red, fruit), projection (if A->B, and B->C, then A->C; this allows for 
speculation in a temporal sense, as well as physical enclosure), topic gisting 
(suggesting what a text on the whole could be about), disambiguation, 
classification, unknown concept identification, etc. 
 
Heavy comparisons (in the theoretical sense... the point was made that a 
numerical comparison is not appropriate) to WordNet and Cyc are made; the 
details of what functionality each serves as a corpus, as well as the methodology 
of their construction are compared to ConceptNet. ConceptNet is evaluated very 
roughly, and the authors have no problem admitting that evaluation is difficult on 
this type of system. They suggest various schemes using human evaluation. They 
also discuss the evaluation of Open Mind Common Sense, as it is the underlying 
data of ConceptNet. Human judges were used to evaluate a sample of the corpus, 
with results being: 75% of items as largely true, 82% as largely objective, 85% as 
largely making sense, and 84% as knowledge someone would have by high 
school. The paper closes with a list of research projects that have used 
ConceptNet. 

 
Evolving GATE to Meet New Challenges in Language Engineering [Bontcheva et al., 
2004] 
 

The authors give a complete rundown of the GATE system (v2), explaining in 
details every change and addition that was made from the first version of the 
system. 
 
In addition to keeping with the theme of GATE (extensible do-it-yourself NL 
tools), the GUI tools are now also extensible, and a variety of knowledge types 
and processing capabilities have been added. 
 
Support for ontologies and lexicons now exist, along with full integration of ML 
algorithms (using WEKA). GATE supports a variety of formats including: plain 
text, HTML, XML, RTF, and SGML. These formats are automatically converted 
inside GATE to a single model. GATE also supports a distributed resources 
model, opening an easy method to create a client server system, where the 
language resources are stored on a central server. GATE has widened its view of 
what a language resource is, from just documents/corpora to include lexicons, 
ontologies, and thesauri. These new types of resources are integrated, such that 
the new processing capabilities of GATE (ML, distributed resources, etc.) are 
compatible. 
 



Lexicons are most extensively supported through WordNet (as it is commonly 
used). Protégé provides the backbone for ontology editing support, showing that 
GATE is willing to open to other generic knowledge tools for good solutions to its 
new feature sets. 

 
GATE: An Architecture for Development of Robust HLT Applications [Cunningham et 
al., 2002] 
 

GATE is a framework design to facilitate development of research using NL 
tools. The GATE system ties in a variety of NL resources, such as syntactic and 
semantic annotation, POS tagging, and reference resolution, along with a variety 
of ways to develop knowledge resources, into an all-encompassing API. The API 
is broken into three resource types: language resources (LRs), lexicons, corpora, 
etc., processing resources, such as those listed above, and visual resources, 
reusable GUI components that tie the whole thing together. 
 
The developer is able to construct a custom fit NL processor through an interface 
that allows connections of existing, or home made resources. Developers can plug 
in, and then remove processors, facilitating the comparison of results with and 
without a certain NL module. 
 
The system also allows for evaluation, by providing statistical analysis of results 
before and after a change to the processor has been implemented. The system also 
supports multilingual applications. 
 
Although GATE is not directly a NLP system, it is a suite of tools that allows one 
to quickly construct a NLP system, tailor made to their specifications. This 
reduces the overhead of integration of NL tools into a full NLP system by 
providing standardized mechanics in Java and XML. 
 
As a consequence of not being a system designed for a specific task, evaluation in 
the paper is described as an additional set of tools GATE provides to evaluate 
systems it creates (rather than a heuristic that was used to evaluate GATEs 
usefulness itself). 

 
The Annotation Graph Toolkit [Maeda et al., 2006] 
 

This paper presents the work done on a system to allow user to easily annotate 
time-series data. The system is constructed on an API, allowing users to quickly 
create new tools specific to their needs. The API provides for a client-server 
method of data storage (using SQL on the server side), and uses IDL as a widget 
generation tool. 
 
An annotation graph is an efficient and expressive data model use for linguistic 
annotations of time-series data. This system allows users (through the API) to 
create anchors in the time-series data. Once two anchors have been created, an 



annotation can be added that spans them. Annotation objects can have any 
number of features associated with them, and the system can be queried for 
annotations that have certain feature types or feature values. 

 
The Berkeley FrameNet Project [Baker et al., 1998] 
 

The paper reports on the efforts of the FrameNet project in its second year. 
FrameNet is described in a theoretical sense: a database containing descriptions of 
the semantic frames underlying words, along with the valence representation of 
accompanying words and phrases, as well as annotated examples. FrameNet’s 
primary goal is to produce a machine-readable database of semantic knowledge; 
the knowledge is to be constructed by humans, thus the FrameNet software is a 
set of tools for assisting this acquisition, along with a set of tools for using (or 
querying) the existing data. 
 
FrameNet’s lexicon is composed of entries which have four fields: a dictionary 
definition (for humans), a series of formulas which represent the morphosyntactic 
ways the entry can be used (syn-struc), links to semantically annotated examples, 
and links to the frame database (as well as other external semantic sources such as 
WordNet). 
 
FrameNet’s frame database is composed of entries, which contain the conceptual 
structure of the frame, and descriptions of their contained elements. 
 
FrameNet, in year two, consists of several thousand such entries (although many 
are stubs), with a defined and functional set of software tools to assist in further 
developing the database. Much of the software is off the shelf, and is held 
together using dynamic web based technologies, such as perl. The system allows 
for people to define, describe, and annotate new frames (allowing for new 
concepts and lexical mappings). 

 
The Evolution of Protégé: An Environment for Knowledge-Based Systems Development 
[Gennari et al., 2003] 
 

The paper describes the motivation behind each incarnation of the Protégé system, 
from its ancestor Opal, to Protégé I, Protégé II, Protégé/Win, and Protégé 2000. 
Each system builds on the findings and usability issues of the others, but each is a 
complete redo in terms of the system architecture. 
 
Protégé originally existed to support modeling expert systems from a knowledge 
base. This was expanded to allow the knowledge base to be defined; later the 
knowledge base became an ontology, which opened up further end user support. 
By the time Protégé 2000 hit, it was an all-in-one ontology and expert system 
design and test system. 
 



The Opal system, developed in 1987, was a knowledge-acquisition tool designed 
to let domain experts enter some domain specific knowledge into an advice 
system (Oncocin). The domain experts (physicians in this case) would enter the 
knowledge in the form of protocols by filling out graphical forms. 
 
Protege-1 (1989) was an abstraction of Opal. The idea was, instead of having to 
have a new specific tool, like Opal, created for every domain that needed 
knowledge entered by experts, that rather a tool would be generated from the 
structural knowledge of the domain. Knowledge engineers would create the basis 
for the knowledge base, and through Protege-1, a tool would be generated that 
domain experts could use to augment the specifics of the knowledge base. 
 
Protege-2 introduced a way to generalize the algorithms, or problem solving 
methods, used on a set of domain knowledge. In other words, after the basis has 
been created, the tool generated, and the knowledge populated, a series of 
number-crunching methods could be used and then re-used on the data. In order to 
support re-usability, the data in the domains would need to be viewed and stored 
in an ontology. 
 
Protégé/Win was developed to expand the use of Protege-2 by making the system 
available on the Windows operating system (as opposed to the NeXTStep OS). 
Protégé/Win also enhanced the modularity and re-usability of the ontology data 
structure, and increased the functionality of the toolset provided. 
 
Protégé 2000 compares very well with DEKADE. It is built on Java, and provides 
users with an API for data access and manipulation. The API is extensible, so the 
users can ditch the default functionality for something more custom made. The 
interface is a tabbed pane view, allowing users to add and remove tabs at will, and 
develop custom tabs when needed. The application supports a variety of data view 
and storage methodologies, as well as various editors and browsers. 

 
The FrameNet Data and Software [Baker and Sato, 2003] 
 

This paper describes the systems level work behind FrameNet in a brief format. 
The way frames and lexical units are constructed (including what they consist of) 
is discussed. Also, the API under construction, the GUI for acquisition, and the 
SQL database supporting the knowledge is explained. 
 
The basic data type is the semantic frame. It defines an event or state, and 
contains properties, or frame elements. One sense of a word is directly associated 
with a frame, and thus makes up a lexical unit. The lexicon was developed to be 
readable by both humans and machines. At print, the FrameNet II database 
consists of 450 frames, and more than 3,000 frame elements, and over 7,500 
lexical units with example sentences and annotations. The data is stored in a 
server-side MySQL database, and accessible through a client interface. 

 



The FrameNet Database and Software Tools [Fillmore et al., 2002] 
 

The primary subject of the article is to describe the various tools and supporting 
data structures available to FrameNet at the time of publication. The authors, 
however, spend a good amount of the paper describing what is to be annotated by 
FrameNet, and what is not. Valid annotation targets include: for verbs, nouns, 
adjectives and prepositions, their post-head complements. For nouns, frame-
relevant possessive determiners are considered valid targets. 
 
Concerning the tools, FrameNet uses a mixture of off the shelf, and in house tools 
to assist in the annotation. An in house frame editor, a GUI written in Java, is 
supported by a MySQL database. FrameSQL, a project written by Sato in Japan, 
facilitates queries through the database. A web-based Lexical Entry report is 
available, which shows the lexical entry in full, along with definition and valence 
patterns (and relevant links to other data). 

 
7.3 Further Readings 
 
The following works will also be studied as preliminary work to any final written 
documentation (these are not the only works intended to be read, but merely what is 
currently “on the plate”). 
 
A Solution to Plato’s Problem: The Latent Semantic Analysis Theory of Acquisition, 

Induction and Representation of Knowledge [Landauer and Dumais, 1997] 
Automatic Labeling of Semantic Roles [Gildea and Jurafsky, 2001] 
Automatically Learning Qualia Structures from the Web [Cimiano and Wenderoth, 2005] 
Commonsense Reasoning in and over Natural Language [Liu and Singh, 2004] 
Espresso: Leveraging Generic Patterns for Automatically Harvesting Semantic Relations 
[Pantel and Pennacchiotti, 2006] 
The State of the art in Ontology Learning: A Framework for Comparison [Shamsfard and 
Barforoush, 2003] 
Using Access Paths to Guide Inference with Conceptual Graphs [Clark and Porter, 1997] 
 
8. Conclusion 

 
This document presented a proposed system for automatic learning of unknown words 
by, and for, a semantic text analyzer.  Motivation for such a system was given, with 
emphasis on the acquisition bottleneck: acquiring quality, broad coverage world 
knowledge is time consuming and error prone.  The need for such a wealth of knowledge 
was motivated with examples of the intended use of a quality semantic text analyzer: 
question-answering systems, topic gisting, opinion extraction, etc.  The proposed system 
aims to reduce the strain of the acquisition bottleneck by using a bootstrapped, existing 
semantic analyzer to extract information on an unknown concept from an open corpus 
(the web), and compile this information into a well formed, new data structure for 
inclusion in the systems own existing static knowledge resources.  The eventual quality 
of such a system would be shown by producing semantically annotated texts concerning 



an unknown word, then learning the word, and reproducing those same annotations (and 
comparing the qualitative differences). 
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