Learning By Reading:

Automatic Knowledge Extraction through Semantic Analysis

PhD Proposal • Jesse English • 3/13/2008

Table of Contents

- Motivation
- Proposal
- Requirements
- Results
- Evaluation
- Future Work

Motivation

Motivation

- Overview
- How do we arrive at semantically annotated text?
- Dodging the bottleneck...
- Addressing the bottleneck...
- Proposal
- Requirements
- Results
- Evaluation
- Future Work

Motivation: Overview

- Semantically annotated text (natural language text marked up in a machine readable format) has a variety of uses:
 - Opinion extraction (crawling the blogosphere)
 - Topic gisting (summarization and searching)
 - Question answering (alternate search engines)

Motivation: How do we arrive at semantically annotated text?

- Extremely time consuming
- Unpredictably error prone (people make mistakes, predicting which ones is difficult)
- Using Natural Language Processing (NLP)
 - Extraordinarily complicated system to produce
 - Needs vast amounts of world knowledge (in the form of a lexicon and ontology)
 - "Knowledge Acquisition Bottleneck"

Motivation: Dodging the bottleneck...

- Automating knowledge acquisition:
 - Structural semantic interconnections [1]
 - "business plan" from "business" and "plan"
 - ML methods over syntactic parse trees [2], [3], [4]
- There is a drawback! These methods are missing semantic information!

- 1. [Navigli et al. 2004]
- 2. [Yangarber, 2003]
- 3. [Reinberger and Spyns, 2004]
- 4. [Toutanova et al. 2005]

Motivation: Dodging the bottleneck... (example)

"The man listened carefully to the address, and later was able to find his way there easily."

- Using a syntactic parse only, one would have to guess the meaning of "address"
- Applying a statistical count, a system would likely see the meaning as that of "a speech", not "a location"
 - This is due to the position of "address" in the sentence
 - A semantic parse would pick up on this distinction, and would see how "address" is referenced later

Motivation: Addressing the bottleneck...

- The bottleneck is a Catch-22!
 - A good semantic parse cannot be produced without broad coverage...
 - But you can't get broad coverage without a good semantic parse!
 - In order to avoid this, you must have a bootstrapped system to start with
 - A system with a "critical mass" of knowledge, enough to get the ball rolling and keep it rolling as it gains ground!

Proposal

Motivation

Proposal

- Overview
- Lifetime learning...
- Selecting a corpus for lifetime learning...
- The wonders of the world wide web :)
- The wickedness of the world wide web :(
- Semantic annotation of the text...
- Constructing candidate knowledge...
- Broaden the system's coverage!
- Requirements
- Results
- Evaluation
- Future Work

Proposal: Overview

- Combining NLP and ML to produce a "lifetime learner"
- An NLP system that enhances itself, escaping the acquisition bottleneck

Proposal: Lifetime learning...

- Given an unknown word, scan a corpus for text containing it
- Semantically analyze the text, relaxing on unknowns
- Combine relevant output from the analysis into candidate knowledge
- Add the candidate to the existing knowledge (thus broadening coverage)

Proposal: Selecting a corpus for lifetime learning...

- Any closed corpus (regardless of size) is finite, and therefore cannot provide true lifetime learning
- The web, however, provides an endless source of material including:
 - Source text
 - Statistical information
- See [Kilgarriff and Grefenstette, 2003]

Proposal: The wonders of the world wide web :)

- A perfect choice for the system proposed:
 - Endless, domain independent knowledge
 - Domain specific text may require more intimate knowledge about the domain, bringing us back to the Catch-22
 - Written in natural language
 - Easily queried

Proposal: The wickedness of the world wide web :(

• Noise!

- Erroneous data
 - "fish have four feet"
- Malformed data
 - This HTML file is actually some encrypted PDF?!?
- Poorly structured text
 - "bbl, i g2g to th estore 4 a bit!!1"
- Misinterpreted queries!
 - Incorrect keywords
 - Bad indexing

Proposal: Semantic annotation of the text...

- Automatic annotation of the text produces a machine readable semantic parse
- As unknown input is expected (by definition), methods of "relaxation" will need to be used
 - Unidirectional selectional restrictions

The baker baked the XYZ. baker \Rightarrow agent-of \Rightarrow bake \Rightarrow theme \Rightarrow pastry

Proposal: Constructing candidate knowledge...

- Extracting the knowledge from semantic annotations we can create new knowledge for the NLP system
 - The knowledge should be filtered
 - The knowledge should also be clustered (words tend to be polysemous, so deciding how many senses there are, and what learned knowledge belongs to which is important)
 - Restructure the learned knowledge into world knowledge for the NLP system

Proposal: Broaden the system's coverage!

- Append the new knowledge to the existing knowledge
 - Depending on the way the knowledge is organized (hierarchically for example, as in an ontology) this must be done carefully
 - After this is done, assuming the knowledge added is accurate, the system's coverage has been broadened
 - Increasing it's use in other applications, in addition to it's ability to continue learning

Requirements

- Motivation
- Proposal
- Requirements
 - Presupposed existing systems...
 - Google
 - OntoSem
 - DEKADE
 - WEKA
 - others
- Results
- Evaluation
- Future Work

Requirements: Presupposed existing systems...

- Access to an open corpus
- A natural language processing system
- An interactive environment into the NLP system
- Machine learning tools
- Various low-level (implementation only) tools
 - Databases
 - HTML parsers

Requirements: Existing systems (Google)...

- To gain query access to the web, and simultaneously gain access to statistical data (such as page hit counts), Google (and it's freely available SOAP Search API) is a perfect fit
 - Indexed web pages can be returned based on a series of search parameters
 - Minor word processing is done by Google to broaden search results (such as root word processing and searching)

Requirements: Existing systems (OntoSem)...

- To fill the need for a natural language processor, OntoSem fits the bill
 - A fully automatic text processing system
 - Relaxes constraints (uses unidirectional selectional restrictions)
 - Is dependent on the quality and coverage of its static knowledge
 - Produces output in a similar format to its static knowledge input

Requirements: Existing systems (DEKADE)

- To fully utilize and explore OntoSem, its knowledge, and the output it produces, an interface to the system (both user, and programmer level) is needed
 - DekadeAPI
 - DekadeAtHome

Requirements: Existing systems (WEKA)

- To make full use of the latest ML tools, (specifically clustering algorithms), the WEKA toolkit provides the perfect platform
 - EM algorithm

Requirements: Existing systems (others)

- PostgreSQL (http://www.postgresql.org/)
- HTML Parser (http://htmlparser.sourceforge.net/)

Results

- Motivation
- Proposal
- Requirements
- Results
 - The first experiment...
 - The second experiment...
 - The third experiment...
- Evaluation
- Future Work

Results: The first experiment...

- The first experiment, published in AAAI Spring Symposium 2007, consisted of running the process on four words
- The general flow of the experiment was consistent with the process described, with "less sophistication":
 - Clustering for multiple senses was not done
 - Less filtering of junk was performed
 - Placement in the ontology was done by using the OntoSearch algorithm [Onyshkevych, 1997]. This method has since been shown to be an inaccurate method of ranking for this experiment.

Results: The first experiment...

Word	Best Match	Selected Match	Difference	Rank	Percentile
pundit	TELEVISION, CITIZEN, HUMAN (and 12 more) 0.800	INTELLECTUAL 0.679	0.121	210/~6000	3.5%
CEO	EVENT 0.900	PRESIDENT- CORPORATION 0.618	0.262	>500/~6000	>8.3%
hobbit	PUBLISH 0.900	HUMAN 0.806	0.094	18/~6000	0.3%
song	WORD, RECORD- TEXT, OBJECT (and 8 more) 0.800	SONG 0.800	0.000	12/~6000	0.2%

Results: The first experiment...

- Used a small generated corpus
- Did not consider multiple word senses
- Used an improper ranking algorithm
- Used words whose senses already were found in the lexicon/ontology

Results: The second experiment...

- To improve the first experiment several steps were taken:
 - Implementation of an appropriate ranking algorithm (abandoning OntoSearch)
 - Improved filtering
 - Larger generated corpus
 - Targeting unknown word senses

Results: The second experiment...

Word (4 of 12)	Similarity to DINOSAUR	Similarity to best match	Rank (out of ~16913)
Brontosaurus	0.373	0.492	9007
Diplodocus	0.500	0.550	2290
Stegosaurus	0.499	0.538	625
Triceratops	0.482	0.488	588

Results: The third experiment...

- The third (and current) experiment involves a few major changes to the process:
 - Multiple word senses are considered
 - Clustering is used to propose word senses
 - A "decision tree" is used as part of the similarity measurement process
 - Substantially larger corpus used (minimum 1000 sentences per target word)

Results: The third experiment...

Word	# Proposed Clusters	Word	# Proposed Clusters
address	5	kid	3
artery	2	library	6
buoy	5	nail	4
catalogue	6	present	4
fork	3	rain	4
free	3	triangle	7
heart	5		

Results: The third experiment..

Fork				
Cluster head	Closest match	Match value		
THEME-OF UTILIZE	FAMILY TRIBE	0.423		
RELATION TUNE- ARTIFACT	COALITION	0.384		
THEME OBJECT	EXTORTION	0.448		

Generated TMR Frames for "fork"
ATTRIBUTE
CITY
EVENT
FORK
PLACE

Evaluation

- Motivation
- Proposal
- Requirements
- Results
- Evaluation
 - Per candidate?
 - Spiral method!
- Future Work

Evaluation: Per candidate?

- One method of evaluation is at the per candidate level:
 - Given candidate knowledge (an ontology or lexicon entry), it can be compared to a gold standard human-created version
 - It could also be compared to a pre-existing, "closest approximation" (as in the first experiment)
 - The same candidate could also be evaluated by the amount of work required (by hand) to turn it into a gold standard

Evaluation: Spiral method!

- Create a baseline of TMRs
- Learn some amount of unknown words in those TMRs, add the candidates to the static knowledge, and recreate the TMRs
- Repeat again
- This should produce two deltas (change in TMR qualities from the baseline, to the first learned values, and then to the second)
- This (theoretically) shows how adding knowledge both improves TMRs, and as a consequence, improves the learning process

Future Work

- Motivation
- Proposal
- Requirements
- Results
- Evaluation
- Future Work
 - Phase 1
 - Phase 2
 - Phase 3

Future Work: Phase 1

- Improvement of the each step of the process, so that better and better results are passed forward
 - Improved querying
 - Better filters to eliminate junk and noise
 - Improved clustering (or sense distinguishing)
 - Improved comparison between candidates and existing concepts

Future Work: Phase 2

- Implementation of the "spiral method"
 - Select a set of semantically related terms to learn
 - Divide the set into two groups
 - Learn all words
 - Manually correct the first group
 - Add the uncorrected first group to the ontology, and re-learn the second group
 - Add the correct first group to the ontology, and relearn the second group
 - Compare the three resulting group twos

Future Work: Phase 3

- Using the set of words from Phase 2 as a search query, automatically produce a set of TMRs
 - Add the learned words to the ontology, and reproduce the same set of TMRs
 - Produce the same set of TMRs by hand
 - Judge the quality of the three sets of TMRs (hopefully showing improvement towards the gold standard over the baseline when adding in the learned knowledge)

Conclusion

- Proposed a system that combines NLP and ML to create a self-improving lifetime learner
- Suggested a list of available tools to accomplish such a task
- Provided results from previous experiments using this methodology
- Presented some methods of evaluating the results of such a system
- Laid out a plan for future research

Questions?

[Navigli et al. 2004]

Navigli, Roberto, Paoloa Velardi, Alessandro Cucciarelli, and Francesca Neri. *Automatic Ontology Learning: Supporting a Per-Concept Evaluation by Domain Experts*. In Proceedings of the Workshop on Ontology Learning and Population (OLP), in the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 1-6. Valencia, Spain. August, 2004.

[Yangarber, 2003]

Yangarber, R. *Counter-Training in Discovery of Semantic Patterns*. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL 2003). 2003.

[Reinberger and Spyns, 2004]

Reinberger, Marie-Laure and Peter Spyns. *Discovering Knowledge in Texts for the learning of DOGMA-inspired ontologies*. In Proceedings of the Workshop on Ontology Learning and Population (OLP), in the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 19-24. Valencia, Spain. August, 2004.

[Toutanova et al. 2005]

Toutanova, Kristina, Aria Haghighi and Christopher D. Manning. *Joint Learning Improves Semantic Role Labeling*. In Proceedings of the 43rd Annual Meeting on Association for Computation Linguistics, pp. 589-596. Ann Arbor, MI. June, 2005.

[Kilgarriff and Grefenstette, 2003]

Kilgarriff, Adam, and Gregory Grefenstette. *Introduction to the Special Issue on the Web as a Corpus*. Computational Linguistics, Volume 29, pp. 333-347. 2003.

[Onyshkevych, 1997]

Onyshkevych, B. Ontosearch: Using an ontology as a search space for knowledge based text processing. Unpublished PhD Dissertation. Carnegie Mellon University. 1997.