Learning By Reading:

Automatic Knowledge Extraction through Semantic Analysis

PhD Proposal • Jesse English • 3/13/2008
Table of Contents

- Motivation
- Proposal
- Requirements
- Results
- Evaluation
- Future Work
Motivation

- Motivation
 - Overview
 - How do we arrive at semantically annotated text?
 - Dodging the bottleneck…
 - Addressing the bottleneck…

- Proposal
- Requirements
- Results
- Evaluation
- Future Work
Motivation: Overview

- Semantically annotated text (natural language text marked up in a machine readable format) has a variety of uses:
 - Opinion extraction (crawling the blogosphere)
 - Topic gisting (summarization and searching)
 - Question answering (alternate search engines)
Motivation: How do we arrive at semantically annotated text?

- By hand?
 - Extremely time consuming
 - Unpredictably error prone (people make mistakes, predicting which ones is difficult)
- Using Natural Language Processing (NLP)
 - Extraordinarily complicated system to produce
 - Needs vast amounts of world knowledge (in the form of a lexicon and ontology)
 - “Knowledge Acquisition Bottleneck”
Motivation: Dodging the bottleneck...

- Automating knowledge acquisition:
 - Structural semantic interconnections [1]
 - “business plan” from “business” and “plan”
 - ML methods over syntactic parse trees [2], [3], [4]
- There is a drawback! These methods are missing semantic information!

1. [Navigli et al. 2004]
2. [Yangarber, 2003]
3. [Reinberger and Spyns, 2004]
4. [Toutanova et al. 2005]
“The man listened carefully to the address, and later was able to find his way there easily.”

- Using a syntactic parse only, one would have to guess the meaning of “address”
- Applying a statistical count, a system would likely see the meaning as that of “a speech”, not “a location”
 - This is due to the position of “address” in the sentence
 - A semantic parse would pick up on this distinction, and would see how “address” is referenced later
Motivation: Addressing the bottleneck...

• The bottleneck is a Catch-22!
 • A good semantic parse cannot be produced without broad coverage…
 • But you can’t get broad coverage without a good semantic parse!

• In order to avoid this, you must have a bootstrapped system to start with
 • A system with a “critical mass” of knowledge, enough to get the ball rolling and keep it rolling as it gains ground!
Proposal

- Motivation
- Proposal
 - Overview
 - Lifetime learning…
 - Selecting a corpus for lifetime learning…
 - The wonders of the world wide web :)
 - The wickedness of the world wide web :(
 - Semantic annotation of the text…
 - Constructing candidate knowledge…
 - Broaden the system’s coverage!
- Requirements
- Results
- Evaluation
- Future Work
Proposal: Overview

- Combining NLP and ML to produce a “lifetime learner”
- An NLP system that enhances itself, escaping the acquisition bottleneck
Proposal: Lifetime learning…

- Given an unknown word, scan a corpus for text containing it
- Semantically analyze the text, relaxing on unknowns
- Combine relevant output from the analysis into candidate knowledge
- Add the candidate to the existing knowledge (thus broadening coverage)
Proposal: Selecting a corpus for lifetime learning...

- Any closed corpus (regardless of size) is finite, and therefore cannot provide true lifetime learning.
- The web, however, provides an endless source of material including:
 - Source text
 - Statistical information
- See [Kilgarriff and Grefenstette, 2003]
Proposal: The wonders of the world wide web :)

- A perfect choice for the system proposed:
 - Endless, domain independent knowledge
 - Domain specific text may require more intimate knowledge about the domain, bringing us back to the Catch-22
 - Written in natural language
 - Easily queried
Proposal: The wickedness of the world wide web :(

- Noise!
 - Erroneous data
 - “fish have four feet”
 - Malformed data
 - This HTML file is actually some encrypted PDF?!?
 - Poorly structured text
 - “bbl, i g2g to th estore 4 a bit!!1”

- Misinterpreted queries!
 - Incorrect keywords
 - Bad indexing
Proposal: Semantic annotation of the text…

- Automatic annotation of the text produces a machine readable semantic parse
- As unknown input is expected (by definition), methods of “relaxation” will need to be used
 - Unidirectional selectional restrictions

The baker baked the XYZ.

baker ⇒ *agent-of* ⇒ bake ⇒ *theme* ⇒ pastry
Proposal: Constructing candidate knowledge...

- Extracting the knowledge from semantic annotations we can create new knowledge for the NLP system
 - The knowledge should be filtered
 - The knowledge should also be clustered (words tend to be polysemous, so deciding how many senses there are, and what learned knowledge belongs to which is important)
 - Restructure the learned knowledge into world knowledge for the NLP system
Proposal: Broaden the system’s coverage!

- Append the new knowledge to the existing knowledge
 - Depending on the way the knowledge is organized (hierarchically for example, as in an ontology) this must be done carefully
 - After this is done, assuming the knowledge added is accurate, the system’s coverage has been broadened
 - Increasing it’s use in other applications, in addition to it’s ability to continue learning
Requirements

- Motivation
- Proposal
- Requirements
 - Presupposed existing systems...
 - Google
 - OntoSem
 - DEKADE
 - WEKA
 - others
- Results
- Evaluation
- Future Work
Requirements: Presupposed existing systems…

- Access to an open corpus
- A natural language processing system
- An interactive environment into the NLP system
- Machine learning tools
- Various low-level (implementation only) tools
 - Databases
 - HTML parsers
Requirements: Existing systems (Google)...

- To gain query access to the web, and simultaneously gain access to statistical data (such as page hit counts), Google (and it’s freely available SOAP Search API) is a perfect fit
 - Indexed web pages can be returned based on a series of search parameters
 - Minor word processing is done by Google to broaden search results (such as root word processing and searching)
Requirements: Existing systems (OntoSem)...

- To fill the need for a natural language processor, OntoSem fits the bill
 - A fully automatic text processing system
 - Relaxes constraints (uses unidirectional selectional restrictions)
 - Is dependent on the quality and coverage of its static knowledge
 - Produces output in a similar format to its static knowledge input
Requirements: Existing systems (DEKADE)

- To fully utilize and explore OntoSem, its knowledge, and the output it produces, an interface to the system (both user, and programmer level) is needed
 - DekadeAPI
 - DekadeAtHome
Requirements: Existing systems (WEKA)

- To make full use of the latest ML tools, (specifically clustering algorithms), the WEKA toolkit provides the perfect platform
 - EM algorithm
Requirements: Existing systems (others)

- PostgreSQL (http://www.postgresql.org/)
- HTML Parser (http://htmlparser.sourceforge.net/)
Results

- Motivation
- Proposal
- Requirements
- Results
 - The first experiment…
 - The second experiment…
 - The third experiment…
- Evaluation
- Future Work
• The first experiment, published in AAAI Spring Symposium 2007, consisted of running the process on four words

• The general flow of the experiment was consistent with the process described, with “less sophistication”:
 • Clustering for multiple senses was not done
 • Less filtering of junk was performed
 • Placement in the ontology was done by using the OntoSearch algorithm [Onyshkevych, 1997]. This method has since been shown to be an inaccurate method of ranking for this experiment.
Results: The first experiment...

<table>
<thead>
<tr>
<th>Word</th>
<th>Best Match</th>
<th>Selected Match</th>
<th>Difference</th>
<th>Rank</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>pundit</td>
<td>TELEVISION, CITIZEN, HUMAN (and 12 more) 0.800</td>
<td>INTELLECTUAL 0.679</td>
<td>0.121</td>
<td>210/~6000</td>
<td>3.5%</td>
</tr>
<tr>
<td>CEO</td>
<td>EVENT 0.900</td>
<td>PRESIDENT-CORPORATION 0.618</td>
<td>0.262</td>
<td>>500/~6000</td>
<td>>8.3%</td>
</tr>
<tr>
<td>hobbit</td>
<td>PUBLISH 0.900</td>
<td>HUMAN 0.806</td>
<td>0.094</td>
<td>18/~6000</td>
<td>0.3%</td>
</tr>
<tr>
<td>song</td>
<td>WORD, RECORD-TEXT, OBJECT (and 8 more) 0.800</td>
<td>SONG 0.800</td>
<td>0.000</td>
<td>12/~6000</td>
<td>0.2%</td>
</tr>
</tbody>
</table>
Results: The first experiment...

- Used a small generated corpus
- Did not consider multiple word senses
- Used an improper ranking algorithm
- Used words whose senses already were found in the lexicon/ontology
Results: The second experiment…

- To improve the first experiment several steps were taken:
 - Implementation of an appropriate ranking algorithm (abandoning OntoSearch)
 - Improved filtering
 - Larger generated corpus
 - Targeting unknown word senses
Results: The second experiment...

<table>
<thead>
<tr>
<th>Word (4 of 12)</th>
<th>Similarity to DINOSAUR</th>
<th>Similarity to best match</th>
<th>Rank (out of ~16913)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brontosaurus</td>
<td>0.373</td>
<td>0.492</td>
<td>9007</td>
</tr>
<tr>
<td>Diplodocus</td>
<td>0.500</td>
<td>0.550</td>
<td>2290</td>
</tr>
<tr>
<td>Stegosaurus</td>
<td>0.499</td>
<td>0.538</td>
<td>625</td>
</tr>
<tr>
<td>Triceratops</td>
<td>0.482</td>
<td>0.488</td>
<td>588</td>
</tr>
</tbody>
</table>
Results: The third experiment...

- The third (and current) experiment involves a few major changes to the process:
 - Multiple word senses are considered
 - Clustering is used to propose word senses
 - A “decision tree” is used as part of the similarity measurement process
 - Substantially larger corpus used (minimum 1000 sentences per target word)
Results: The third experiment...

<table>
<thead>
<tr>
<th>Word</th>
<th># Proposed Clusters</th>
<th>Word</th>
<th># Proposed Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>5</td>
<td>kid</td>
<td>3</td>
</tr>
<tr>
<td>artery</td>
<td>2</td>
<td>library</td>
<td>6</td>
</tr>
<tr>
<td>buoy</td>
<td>5</td>
<td>nail</td>
<td>4</td>
</tr>
<tr>
<td>catalogue</td>
<td>6</td>
<td>present</td>
<td>4</td>
</tr>
<tr>
<td>fork</td>
<td>3</td>
<td>rain</td>
<td>4</td>
</tr>
<tr>
<td>free</td>
<td>3</td>
<td>triangle</td>
<td>7</td>
</tr>
<tr>
<td>heart</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: The third experiment..

<table>
<thead>
<tr>
<th>Cluster head</th>
<th>Closest match</th>
<th>Match value</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEME-OF UTILIZE</td>
<td>FAMILY TRIBE</td>
<td>0.423</td>
</tr>
<tr>
<td>RELATION TUNE-ARTIFACT</td>
<td>COALITION</td>
<td>0.384</td>
</tr>
<tr>
<td>THEME OBJECT</td>
<td>EXTORTION</td>
<td>0.448</td>
</tr>
</tbody>
</table>

Generated TMR Frames for “fork”

- ATTRIBUTE
- CITY
- EVENT
- FORK
- PLACE
Evaluation

- Motivation
- Proposal
- Requirements
- Results
- Evaluation
 - Per candidate?
 - Spiral method!
- Future Work
Evaluation: Per candidate?

- One method of evaluation is at the per candidate level:
 - Given candidate knowledge (an ontology or lexicon entry), it can be compared to a gold standard human-created version
 - It could also be compared to a pre-existing, “closest approximation” (as in the first experiment)
 - The same candidate could also be evaluated by the amount of work required (by hand) to turn it into a gold standard
Evaluation: Spiral method!

- Create a baseline of TMRs
- Learn some amount of unknown words in those TMRs, add the candidates to the static knowledge, and recreate the TMRs
- Repeat again
- This should produce two deltas (change in TMR qualities from the baseline, to the first learned values, and then to the second)
- This (theoretically) shows how adding knowledge both improves TMRs, and as a consequence, improves the learning process
Future Work

- Motivation
- Proposal
- Requirements
- Results
- Evaluation
- Future Work
 - Phase 1
 - Phase 2
 - Phase 3
Future Work: Phase 1

- Improvement of each step of the process, so that better and better results are passed forward
 - Improved querying
 - Better filters to eliminate junk and noise
 - Improved clustering (or sense distinguishing)
 - Improved comparison between candidates and existing concepts
Future Work: Phase 2

- Implementation of the “spiral method”
 - Select a set of semantically related terms to learn
 - Divide the set into two groups
 - Learn all words
 - Manually correct the first group
 - Add the uncorrected first group to the ontology, and re-learn the second group
 - Add the correct first group to the ontology, and re-learn the second group
 - Compare the three resulting group twos
Future Work: Phase 3

- Using the set of words from Phase 2 as a search query, automatically produce a set of TMRs
 - Add the learned words to the ontology, and re-produce the same set of TMRs
 - Produce the same set of TMRs by hand
 - Judge the quality of the three sets of TMRs (hopefully showing improvement towards the gold standard over the baseline when adding in the learned knowledge)
Conclusion

- Proposed a system that combines NLP and ML to create a self-improving lifetime learner
- Suggested a list of available tools to accomplish such a task
- Provided results from previous experiments using this methodology
- Presented some methods of evaluating the results of such a system
- Laid out a plan for future research
Questions?

[Navigli et al. 2004]

[Yangarber, 2003]

[Reinberger and Spyns, 2004]

[Toutanova et al. 2005]

[Kilgarriff and Grefenstette, 2003]

[Onyshkevyych, 1997]