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ABSTRACT 

This paper describes an approach to alleviating the well-known 
problem of the knowledge acquisition bottleneck in knowledge-
based systems. In knowledge-based, meaning-oriented natural 

language processing, the core knowledge resources are a seman-
tic lexicon and an ontological world model in terms of which 
lexical meaning is expressed. We describe a mutual bootstrap-
ping approach whereby existing resources are used to create 
additional resources that are then added to the original resources. 
Thus, text understanding bootstraps the learning process , which 
in turn boosts the knowledge resources underlying text under-
standing. Specifically, in our experiments an existing ontology 

and an existing semantic lexicon are used by the ontological-
semantic text analyzer OntoSem to analyze sentences mined 
from the web and containing specific words unknown to the 
system to generate candidates for ontological concepts and lexi-
con entries that at the time are not part of OntoSem’s static 
knowledge resources. The experiments described in the paper 
have as their goal a) empirical determination of the number of 
senses for a word; b) automatic creation of ontological concepts 

(named sets of property-value pairs) describing the meanings of 
word senses; and c) suggesting the location of the newly ac-
quired concepts in the ontological network.  The experimental 
environment described is also used for empirical validation of 
ontological property values in concepts originally encoded by 
knowledge engineers. 

1. INTRODUCTION 
Automating knowledge acquisition is perhaps the single most 

important long-term goal of the field of intelligent systems and 
AI. Of all the possible sources of knowledge, text is probably 
the most attractive. A variety of methodologies have been em-
ployed to tackle the problem of automatic acquisition of knowl-
edge from text, for example, statistical methods in conjunction 
with part of speech tagging or semantic clustering of known and 
unknown words [18], or generic pattern extraction for determin-
ing semantic relations [28].  We focus our knowledge acquisi-

tion approach on automatic extraction of meaning from texts 
using the OntoSem text analyzer and its associated knowledge 
resources (see Section 2). Our approach uses the Web as the 
open corpus of English texts to be processed by OntoSem. The 
knowledge structures obtained through OntoSem processing 
provide the basis for extending the coverage and improving the 
quality of OntoSem’s knowledge resources, primarily, its ontol-

ogy and lexicon. Thus, this approach is mutually bootstrapping, 
as the existing resources are used to support a process that re-
sults in their own expansion and enhancement. This approach 
can be seen as following two of the trends that Manning [20] 
described as essential for continued progress in machine learn-
ing of natural language – reliance on representations and on 
deeper interest in the features used for learning: “What … de-
termines the better systems? The features that they use… This 

viewpoint is still somewhat unfashionable, but I think it will 
increasingly be seen to be correct… The often substantial differ-
ence between the systems is mainly in the features employed. In 
the context of language, doing “feature engineering” is other-
wise known as doing linguistics. A distinctive aspect of lan-
guage processing problem is that the space of interesting and 
useful features that one can extract is usually effectively un-
bounded. All one needs is enough linguistic insight and time to 
build those features (and enough data to estimate them effec-

tively).” Our work certainly relies on representations and also on 
a set of ontological features that were developed and tested in 
various semantic processing engines over many years. 
 
In this paper we present our latest results in ontology and lexi-
con learning by mining the Web.  Ontology learning as a field 
concerns itself at this time with learning terms, (multilingual) 
synonyms, concepts, taxonomies (by far the most popular topic), 

relations and rules and axioms [6]. Different combinations of 
linguistic (knowledge-based) and statistical methods are typi-
cally used, but mostly the latter. Work on extracting specific 
relations using largely statistical means has been reported – [7] 
for meronymy, [9] for the qualia of the generative lexicon ap-
proach [30], and causal relations [16], among others.  OntoSem, 
however, addresses the task of extracting knowledge about a 
large set of such relations using encoded knowledge as heuris-

tics. Thus, our goals are closer, for example, to work by [10] that 
uses essentially statistical methods for estimating selectional 
restrictions. Among the sources of knowledge acquisition are 
machine-readable dictionaries (e.g., [24]), thesauri (e.g., [23]), 
as well as text (e.g., [26], [5], [8]).  
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Our approach relies on a dynamically generated corpus of 
knowledge structures, text meaning representations, or TMRs 
generated by OntoSem (see Section 2), which relies on deep 
linguistic analysis strengthened by statistical algorithms operat-
ing over an ontology and the nascent TMRs. At present, the 

quality of automatically generated TMRs is not optimal. A long-
term goal of our work is to improve the quality of TMRs 
through learning new ontological and lexical knowledge using 
the current state of OntoSem, with or without using human vali-
dators/editors to “goldenize” system-produced TMRs.  
 
This paper is organized as follows. Section 2 briefly describes 
the ontological-semantic environment that we use for mining 

data from the Web. The experiments and results are described in 
Section 3. Integration of separate results and evaluation is pre-
sented in Section 4. Section 5 is devoted to discussion of the 
results and future work. 

2. ONTOSEM 
OntoSem (the implementation of the theory of Ontological Se-
mantics; [25]) is a text-processing environment that takes as 
input unrestricted raw text and carries out preprocessing, mor-
phological analysis, syntactic analysis, and semantic analysis, 
with the results of semantic analysis represented as formal text-
meaning representations (TMRs) that can then be used as the 
basis for many applications. TMRs have been used as the sub-
strate for question-answering (e.g., [2]), machine translation 

(e.g., [1]) and knowledge extraction, and were also used as the 
basis for reasoning in the question-answering system AQUA, 
where they supplied knowledge to showcase temporal reasoning 
capabilities of JTP [15]. Text analysis relies on the following 
static knowledge resources:  

• The OntoSem language-independent ontology, which cur-
rently contains around 8,500 concepts, each of which is de-
scribed by an average of 16 properties. The ontology is 
populated by concepts that we expect to be relevant cross-
linguistically. The current experiment was run on a subset 
of the ontology containing about 6,000 concepts. 

• An OntoSem lexicon whose entries contain syntactic and 
semantic information (linked through variables) as well as 
calls for procedural semantic routines when necessary. The 
current English lexicon contains approximately 30,000 
senses, including most closed-class items and many of the 
most frequent and polysemous verbs, as selected through 
corpus analysis. The base lexicon is expanded at runtime 
using an inventory of lexical (e.g., derivational-

morphological) rules. 
• An onomasticon, or lexicon of proper names, which con-

tains approximately 350,000 entries.  
• A fact repository, which contains “remembered instances” 

of ontological concepts. The fact repository is not used in 
the current experiment but will provide valuable semanti-
cally-annotated context information for future experiments. 

• The OntoSem syntactic-semantic analyzer, which performs 
preprocessing (tokenization, named-entity and acronym 

recognition, etc.), morphological, syntactic and semantic 
analysis, and the creation of TMRs.  

• The TMR language, which is the metalanguage for repre-
senting text meaning (a converter was developed between 
this custom language and OWL, see [17]). 

OntoSem knowledge resources have been acquired by trained 
acquirers using a broad variety of efficiency-enhancing tools – 

graphical editors, enhanced search facilities, capabilities of 
automatically acquiring knowledge for classes of entities on the 
basis of manually acquired knowledge for a single representative 
of the class, etc.  

3. THE EXPERIMENTS 
Our research aims at automatic enhancement of both the ontol-
ogy and the ontological-semantic lexicon. One goal is to mine 
the Web to learn the meanings of words unknown to OntoSem. 
Another goal is to mine the Web to provide empirical verifica-
tion for the values of the various ontological properties that were 

acquired by human knowledge engineers. We make a simplify-
ing assumption that the meaning of a word unknown to the 
system will be expressed as a univocal mapping to an ontologi-
cal concept. This decision does not constrain the results, though 

it influences the interrelationship between the ontology and the 
lexicons in OntoSem – under the current assumption, the mean-
ing of a word, as recorded in the sem-struc zone of its lexicon 
entry, will be simply a pointer to an ontological concept. This 
univocal mapping is just one of several types of lexical meaning 
specification in OntoSem (see [25], Chapter 8 for details).  

In order to learn an ontological concept by mining the Web to 
establish the meaning of a(n unknown) word, one must a) de-
termine a set of ontological properties relevant to the newly 
acquired concept; b) determine the ranges of values of these 
properties; and c) find an appropriate place in the ontological 

hierarchy to add the new concept. Unknown words can be 
polysemous, in which case it would also be necessary to d) de-
termine the appropriate number of senses for the unknown word 
and create a new ontological concept for each of them. Deter-
mining the number of senses is a difficult task in itself (practi-
cally no two dictionaries have the same number of senses for a 
word). Note that whatever process is used for determining the 
number of senses for an unknown word can also be applied to 
words already in the lexicon, as it is quite possible that in the 
existing lexicon not all of whose senses are covered. 

The three experiments we are reporting are devoted to the spe-

cific subtasks in the list above. Some of the processing is identi-
cal in each of the experiments. But they differ in the degree to 
which they use the various OntoSem resources. Thus, Experi-
ment A is devoted to empirical validation of existing property 
(specifically, attribute) values and learning new ones. It uses 
only the static knowledge resources of OntoSem. Experiment B 
seeks to determine the number of senses of the new words and 
delineate the constraints on the property (mostly, relation) val-
ues of each sense. This experiment, in addition to the static 

knowledge resources, also relies on the results of syntactic 
analysis of input. The main goal of Experiment C is to determine 
the semantic constraints on the property values of the newly 
acquired concepts. Finding the appropriate positions for the new 
concepts in the ontological hierarchy is an auxiliary objective 
that facilitates the evaluation of the results. We also experiment 
with integrating all of our experimental work. In particular, we 
report on how results of Experiments A and B can be used as 
additional empirical evidence in Experiment C.  

The method of Experiment A is “knowledge-lean” while that of 
Experiment C is “knowledge-rich,” with Experiment B some-

where in between on this scale. Knowledge richness promises 
better results due to availability of human-acquired prior de-
scriptive and processing-oriented knowledge that plays the role 
equivalent to that of corpus annotation in methods that are more 



clearly statistical. It is common knowledge, however, that creat-
ing knowledge manually is expensive and prone to errors – after 
all, this difficulty is widely considered the main reason for the 
lack of success of early AI. Many recent and current approaches 
to both learning from text and processing text have therefore 

tended toward knowledge-lean methods. This preference pro-
motes broad coverage at the expense of the quality of results. 
The difference in the amounts of knowledge and processing 
resources in the three experiments reported in this paper was 
intended to provide empirical data on the utility of knowledge-
lean data mining for eliciting rich ontologies and suggest possi-
ble economies in the acquisition effort – in part, by allowing 
human acquirers to be instead validators of knowledge generated 
automatically.   

All the experiments share some of their steps. Each experiment 
starts with a list of words whose meanings will be learned by the 

system. Next, each experiment mines from the Web a corpus of 
sentences containing this word. In the case of Experiment A, a 
sequence of search queries is created, in which the word in ques-
tion is augmented by the English realizations of the meanings of 
ontological attributes. Experiment A concentrates on attributes 
(unary predicates with either numerical or symbolic ranges as 
value sets). Experiment B concentrates on case roles (a subset of 
ontological relations that includes such relations as agent, theme 

and beneficiary, among others) that reflect the constraints on co-
occurrence of various ontological concepts in propositions en-
coding meanings of natural language sentences. This experiment 
uses the syntax-semantics linking information in the OntoSem 
lexicon to acquire sets of semantic constraints on the basis of the 
meaning sets corresponding to specific syntactic roles in phrases 
with the unknown word. For example, one such set would con-
tain ontological concepts that specify the meaning of all the 

attested words that serve as syntactic heads of phrases serving 
the grammatical function of DirectObject of a verb. Determining 
the number and grain size of concept clusters in the above sets 
of semantic constraints is the main means of suggesting the 
number of senses for the unknown word.  

Experiment C uses both syntactic and semantic analyzers of 
OntoSem seeking to produce TMRs for sentences containing the 
unknown word. The OntoSem text analyzer degrades gracefully 
in the face of unexpected input, so it is capable of semantically 
analyzing sentences with a small number of unknown words by 
assuming that the unknown word’s meaning corresponds di-

rectly to a non-existent ontological concept and then (unidirec-
tionally) applying relevant constraints listed in the ontological 
interpretations of the meanings of the known words in input that 
are connected with the unknown word through well-defined 
ontological relations to hypothesize the constraints on the mean-
ing of the unknown words. As a result of this stage, Experiment 
C produces sets of pairs of property instances and their values 
that are, in effect, the newly acquired ontological concepts. In 

many cases OntoSem is not capable of carrying out unidirec-
tional selectional restriction matching, so that not all the sen-
tences containing the candidate word that are found in the cor-
pus yield useful property-value pairs. Once the set of such pairs 
is found, the system compares it to other such sets that comprise 
the ontological descriptions of concepts already existing in the 
OntoSem ontology, thus suggesting a place for the new con-
cept(s) in the ontological hierarchy. 

3.1 Experiment A: Mining the Web for At-

tribute Values 
In this experiment the OntoSem ontology is used as the basis for 
building search queries. Each ontological property of the attrib-
ute (unary) type is associated with a list of its possible English 
realizations (obtained from the system’s lexicon). A search 
query is created by combining this list with either a word (when 

learning new concepts and lexicon entries) or a list of words 
realizing in English the meaning of a concept (when using this 
method for empirical verification of the existing ontology and 
lexicon). For example, for the concept ELEPHANT and the attrib-
ute WEIGHT, the following query is produced: (elephant) AND 
(weigh OR mass OR heavy OR heaviness). Note that since 
Google matches partial strings on queries, the search string 
weigh will match with many strings such as: weigh, weight, 

weighing, weighs, weighed, etc.  Typically, a search of 500 web 
pages takes approximately one hour. 

The result of the search is a list of sentences matching the query. 
These candidate sentences are then processed further by one of 
two different methods depending upon whether they contain a 
measurable (e.g., weight) or non-measurable (e.g., color, whose 
values are represented in the OntoSem ontology by a set of 
primitive literals, such as green) attributes. In the latter case, a 

count is produced for the occurrences of each of the literals in 
the data. Table 1 illustrates the results for several runs aimed at 
empirical validation of existing ontological values.  These 
searches were done on 500 web pages. 

Table 1. Learning Literal Attribute Values 

Concept/ 

Attribute 
Web Mining Results 

Existing ontol-

ogy has 

 

ELEPHANT/ 
COLOR 

white: 283; pink: 188; 
blue: 92; black: 64;  red: 
61;  gray: 45;  green: 39;  

yellow: 39;   brown: 23;  
purple: 13 

black  
brown  
gray 

tan  
white 

 

SPINACH/ 
COLOR 

red: 509  green: 297  
black: 246  white: 227 
orange: 129  blue:125 

green 

 

GRATER/ 
SHAPE 

conical: 33;  circular: 22;  
curved: 27; cylindrical: 

23; rectangular: 23; hex-
agonal: 12 

parallelepiped 
sheetlike trape-
zoidal 

 

Table 1 suggests that the results will have to be validated by 

humans before they are actually used to modify the ontology due 
to empirical evidence. The great variety of elephant colors ap-
pears generally because of metaphorical usage (pink, white) or 
because the elephants are toys. While there are indeed both 
green and red varieties of spinach, the other colors are actually 
of other objects in the search space returned by the queries.  At 
the same time, the last line of the table does not contain the same 
percentage of noise and is rather useful as is. 

In the case of scalar attributes, each sentence in the results is 
searched for value-unit pairs.  For example, the sentence “The 

elephant weighs five tons and is ten feet tall” contains two such 

pairs: five tons and ten feet.  If the property being searched for is 
WEIGHT, then five tons is accepted a valid measure, since tons is 



a weight measure, while ten feet is rejected since weight is not 
measured in feet. All units are then converted into metric units, 
which is the standard in the OntoSem ontology. In some special 
cases, stop lists were generated to eliminate any errors that 
might be introduced by such conversions. Care was also taken to 

find ranges of values. If a sentence said “Elephants weigh be-

tween 4000 and 9000 kilograms.” then both 4000 kilograms and 
9000 kilograms are returned as valid elephant weight values.  If 
the purpose of the data mining run is to determine constraints on 
a property of a newly learned concept, the range of values mined 
from the Web is compared with the range of values for the at-
tribute in question within the definition of the concept in ques-
tion in the OntoSem ontology. Table 2 presents a small sampling 

of results based on a search of 200 web pages for each concept-
property pair.  

Table 2. Concept-Property Pairs for Scalar Attributes  

Concept Attribute 
Range Mined 

from the Web 

Range in On-

tology 

SQUASH LENGTH 
0.025 – 9.754 
(meters) 

0.012 – 0.024 
(meters) 

TUNA WEIGHT 
0.128 – 817 (kilo-
grams) 

2 – 820 (kilo-
grams) 

ELEPHANT WEIGHT 
0.227 – 10866 
(kilograms) 

3500 – 13000 
kilograms 

 

The above results are still noisy due to a variety of reasons but 

mainly, again, because of ambiguity (toy elephants versus real 
elephants). A central direction of our work is studying the cost 
of eliminating this ambiguity against the depth and breadth of 
knowledge that must be used for disambiguation. The first 
preliminary step in that direction is determining the cardinality 
of the set of concepts that can correspond to the word in ques-
tion, that is, the arity of the ambiguity. For example, elephants 
can be ambiguous between African, Asian, forest, toy and meta-

phorical elephants. Our initial approach is that of clustering the 
results obtained from mining the Web. We clustered the results 
of Experiment A using the EM algorithm tool in the WEKA 
toolkit [32]. As an example, consider the results of clustering for 
SQUASH LENGTH. Four  clusters were produced. The fourth clus-
ter, which ranged from 4.877 to 9.754 meters, included values 
that were all derived from sentences which dealt with squash 

courts. This kind of outcome again demonstrates a limitation of 

the knowledge-lean approach used in this experiment. For better 
results, one must analyze the data deeper; in this case, it will 
help to filter out the cases where the word squash is not the head 
of the noun phrase in which it appears. However, if used for 
empirical support of a human knowledge acquirer, even the 
current clustering capabilities facilitate knowledge acquisition – 
for instance, the elimination of the cluster relating to squash 
courts from consideration of the length attribute of squash the 
vegetable (see Table 3). The results for TUNA and ELEPHANT 

WEIGHT in this table similarly filter out the weight of cans of 
processed tuna, baby elephants, elephant parts (brain, heart, tail, 
etc.) and elephant seals.   

 

Table 3. Concept-Property Pairs for Scalar Attributes after 

filtering by human acquirers 

Concept Attribute Range Mined 

from the Web 

Range in On-

tology 

SQUASH LENGTH 0.025 – 0.914 
(meters) 

0.012 – 0.024 
(meters) 

TUNA WEIGHT 2.5 – 817 (kilo-
grams) 

2 – 820 (kilo-
grams) 

ELEPHANT WEIGHT 2268 – 10866 
(kilograms) 

3500 – 13000 
kilograms 

 

3.2 Experiment B: Word Sense Discrimina-

tion and Delineating Relations Among Verb 

Senses 
This experiment uses one of OntoSem’s static knowledge 
sources, the lexicon, in conjunction with syntactic analysis and 
unsupervised clustering to automatically determine the number of 
senses detected in a corpus for a an unknown verb and generate 
for it a candidate OntoSem lexicon entry. For our initial experi-
ment, each automatically generated cluster of values of the agent 
and theme case roles will represent a unique sense of the un-
known verb. Once the candidate lexicon entries are created, they 

can be presented to knowledge acquirers for validation. Results of 
this experiment are also integrated with those of Experiment C 
(see Section 4 below).  

The process used is as follows. The web is searched for docu-
ments that contain any form of an unknown verb. The documents 
are prepared for processing by stripping any HTML markup and 
chunking the remaining content into sentences using LingPipe 
[19]. These sentences are then searched for any morphological 

form of the unknown verb. The matching sentences are parsed 
using the Bikel parser [4]. Syntactic analysis yields immediate 
constituents for a sentence. A set of simple heuristics establishes 
which of the constituents fill the grammatical functions of subject 
and direct object. This subcategorization information, in turn, 
facilitates the use of the OntoSem lexicon to suggest a set of 
semantic constraints on the AGENT and THEME case roles of the 
concept underlying the unknown verb. For simplicity, we assume 
only a single type of linking between grammatical functions and 

semantic selectional restrictions (case roles): the grammatical 
subject is linked to the AGENT case role, while the grammatical 
object is linked to the THEME case role. 

Similar approaches to the task of word sense discrimination 
include [33], [31], and [29]. [33] uses seed rules to create training 
examples for a supervised classification algorithm. These seed 
rules define word cooccurence rules over a span of tokens and do 
not use any syntactic or semantic knowledge from the text. [31] 

also uses word cooccurence, however second order cooccurences 
are used to reduce sparsity. [29] uses word collocations and 
coocurrences as features for unsupervised clustering, but include 
linguistic features such as part of speech tags and content colloca-
tions. Our approach is more similar to [29], in that we use a mix 
of word and syntactic features for unsupervised clustering. How-
ever, the inventory of linguistic and especially semantic features 
we are able to use is more extensive, because we can take advan-

tage of the Ontosem lexicon. 



A look-up in the OntoSem lexicon attaches one or more ontologi-
cal concepts to words in the context.  Because, unlike in Experi-
ment C, compositional-semantic analysis is not performed, lexical 
ambiguity cannot be eliminated, and as a result, several ontologi-
cal concepts can in principle be attached to a word. For this 

experiment we make a strong simplification by choosing only the 
concept from the first sense of a word in the OntoSem lexicon.  

We use a simplifying hypothesis that the head of the noun phrase 
immediately prior to the verb is most likely to be the subject of 
the verb and the head of the noun phrase following the verb is 
most likely to be the direct object of the verb. These features give 
information about the syntactic and token context of the verb. 
However to identify distinct word senses, we add the semantic 

features agent and theme. Their values are obtained from the 
OntoSem lexicon entries for the heads of the subject and direct 
object grammatical functions.  

Once the features are determined, we generate a single feature 
vector for each sentence in our corpus. To compute the clusters 
over the features we use the Expectation Maximization (EM) 
algorithm [12] in the WEKA toolkit. Each cluster suggests a 
unique candidate word sense. The top 5 values for the features 

agent and theme are used to determine constraints on the THEME 
and AGENT semantic roles of the candidate lexicon entries. The 
top 5 values for the subject and object features give the human 
reviewer the insight of what has generated the top 5 concepts. 

3.2.1 Experimental Results 
Tables 4 and 5 show the top 5 words and concepts for the two 
clusters generated by data collected for the unknown verb deport. 
In the OntoSem lexicon, deport is currently monosemous. Even 
though deport currently exists in the lexicon it is not used for 

parsing or other syntactic tasks. This does not skew the results, 
and it gives an initial metric to compare our results against. 

Table 4.  5 Most Frequent Values for Verb Deport, Cluster 1 

Subject  Agent  Object  Theme  

Government Nation(48) people Human (144) 

ICE Human (41) Aliens Nation (31) 

Policy Procedure (13) Country City (27) 

officials Ice (13) Germany Citizen (14) 

Authorities Social-role (10) Immigrants Criminal (14) 

 

Table 5.  5 Most Frequent Values for Verb Deport, Cluster 2 

Subject  Agent  Object  Theme  

Jews Human (145) Auschwitz Nation (110) 

People City (31) Deportation Human (52) 

Immigrants Nation (21) Country City (23) 

Persons Function (10) Time 
Printed-

media (8) 

Person Social-role (8) People Year (8) 

 

Tables 4 and 5 show the top 5 values by frequency of the 
clustered instances for the four features subject, agent, object 

and theme. The frequency counts for each value in the corpus 
are shown in parentheses. Note that there is no special 
significance to the fact that, say, the fifth ranked object word is 
immigrants and the fifth ranked object concept is CRIMINAL.  If a 
context word does not have a corresponding concept (that is, it is 

not in the OntoSem lexicon) or if the unknown verb is 
intransitive, values for the object and theme features would be 
missing. Based on the data in Tables 4 and 5, two candidate 
lexicon entries would be produced for human review: 
 
  (deport-v1  
   (cat v) 
   (syn-struc ((root $var0) (cat v) (subject ((root $var2) (cat np))) 

    (directobject ((root $var3) (cat np))))) 
  (sem-struc 
    (event (agent (value NATION)) (theme (value HUMAN)))))) 

(deport-v2 
   (cat v) 
   (syn-struc ((root $var0) (cat v) (subject ((root $var2) (cat np))) 
    (directobject ((root $var3) (cat np))))) 
  (sem-struc 

    (event (agent (value HUMAN)) (theme (value NATION)))))) 

Note that the position of Experiment B on the knowledge 
richness scale is such that it does not take into account the 
differences in voice (active or passive) or other diathesis 
transformations of the sentences mined from the web. In the 
above example, it is for this reason that two lexicon entries are 
automatically suggested. 

In our example, both candidate lexicon entries are transitive 

verbs. One candidate entry will have its AGENT and THEME case 
roles constrained to the concepts in the ontological subtrees 
rooted at the concepts NATION and HUMAN, respectively. The 
second sense will have this assignment reversed. Depending on 
the specific task at hand, the knowledge acquirer may decide to 
include either both senses, or any one of them.  

The second ranked subject word in cluster 1, ICE, is not frozen 
water but rather an acronym for Immigrations and Customs 
Enforcement. A similar error occurs with the fourth ranked 

object word in cluster 2, Time, which refers to Time Magazine. 
The inclusion of a named entity tagger will help to resolve these 
errors. 

3.2.2 Future Work  
Our current experiment is rather constrained in both the inven-
tory of features used and the depth of analysis of text. We plan 
to extend the inventory of grammatical functions and, conse-
quently, case roles used in the process by extending the set of 
verb subcategorization patterns covered to include prepositional 

objects (and their semantic correlates in the realm of case roles – 
e.g., DESTINATION or PURPOSE) by processing prepositional 
phrases attached to the unknown verb. 

Intelligent feature engineering could be applied to generate 
nominal values for processing events such as “context word not 
in lexicon,” “no ontological concept for context word,” and 
“fewer than 10 context words exist” as opposed to simply mark-
ing these values as “missing”. 



3.3 Experiment C: Learning Word Mean-

ings (Ontological Concepts) 
In this section, we describe our experiment devoted to learning 
meanings of words not covered by the existing OntoSem lexi-
con. We are making a simplifying assumption that the meaning 
of a word is represented through a univocal mapping to an onto-
logical concept. To evaluate the quality of the machine-learned 

ontological concepts, we have also developed a procedure for 
finding the most appropriate place for the newly learned concept 
in the existing ontology. We can then compare the automatically 
derived ontological position with the best decision by human 
acquirers. 

We start with an unknown word and  mine the web for sentences 
containing it.  These sentences are then processed using the 
OntoSem text analyzer.  Because OntoSem has been engineered 
to handle unexpected input, it will not fail on a sentence just 
because it contains an unknown word. In the resulting TMR, the 
meaning of the unknown word W will be represented by an 

ontological concept C that will be created by unidirectional ap-
plication of selectional restrictions listed with the meanings of 
those words in the input that stand in specific semantic relations 
with W.  For example, if cook in its main verbal sense were an 
unknown word in the OntoSem lexicon, analysis of a large cor-
pus of sentences with this verb would result in proposing to 
explain its meaning using a concept of the type EVENT, with 
constraints on its THEME deriving from the ontological subtrees 

rooted at the concepts PREPARED-FOOD and MEAL. The following 
description of the learning algorithm contains references to ex-
perimental results on twelve learned concepts, shown in Tables 
6 and 7 of Section 4. 

After OntoSem produces a set of TMRs (see Table 6, column 
B), the automatically generated property-value pairs for the 
candidate concept are extracted (see Table 6, column C).  These 
properties are often relational properties, such as THEME, or 
AGENT-OF. These properties are then filtered down, in order 
to leave only the more relevant ones for further analysis.  
First, placeholder and debugging properties are removed. 
After this phase of processing, the results will be in the form of a 
list of property-value pairs similar to the following (numbers 
appended to the concept name are numbers of instances of that 
object remembered by the system): 

<relation type="AGENT-OF" value="EVENT-2069"> 

<relation type="AGENT-OF" value="WEAR-CLOTHES-3642"> 
<relation type="BENEFICIARY-OF" value="EVENT-879"> 
<relation type="DESTINATION-OF" value="OBJECT-2932"> 

The next round of filtering eliminates those property-value pairs 
on the empirically generated list whose value sets are fully cov-

ered by the value set of another property-value pair for the same 
property. In other words, when there exist two instances of the 
same property, say, AGENT, with different values, say OBJECT, 
and PHYSICAL-OBJECT, the property instance with value OBJECT 
will be filtered out, because being a PHYSICAL-OBJECT presup-
poses being an OBJECT (in other words, PHYSICAL-OBJECT is an 
ontological descendant of OBJECT). As a result of this step, the 
first line of the above list will be deleted, as WEAR-CLOTHES 
subsumes EVENT. 

The process of querying the web, analyzing the text, extracting 
and filtering the properties is repeated until an empirically 

defined minimum inventory of property-value pairs is collected.  

At this point, a candidate concept is declared to be the set of 
remaining property-value pairs.1   

Now that the concept has been created, we start the process of 
finding an appropriate place for its inclusion in the ontological 
network. This process pursues two different goals. First, as men-
tioned above, it is used to evaluate the quality of the automati-
cally generated concept candidate. Second, it serves as a means 

of integrating results of Experiment A with those of Experiment 
C. The reason for this integration is the realization that these 
experiments are, in a sense, complementary. Indeed, the method 
of Experiment C relies on automatic learning of relation-type 
properties, which is facilitated by the TMR-producing capabili-
ties of the OntoSem analyzer (the reason being that English 
realizations of relations, such as AGENT or THEME co-occur with 
the unknown word whose meaning we are learning in any sen-
tence with that word). For Experiment A to operate, it must 

know the inventory of relevant attribute-type properties to form 
appropriate queries for mining the web. 

The process of finding the inclusion location for the candidate 
concept is described in detail in [14]. Here we present just a 
brief sketch. The candidate concept is compared in order with 
each concept in the ontology.  An algorithm, a version of the 
SVM approach, for determining similarity on a 0 to 1 scale has 
been implemented for this purpose.  The concept for which the 
algorithm returns the highest result is considered the “closest” 
match to the candidate concept, and marks the system’s choice 
for where to insert the newly created concept into the ontologi-
cal graph (see Table 6, Column E). 

The similarity metric we use first identifies the type of the val-

ues for each property (numeric, numeric range, concept, concept 
range, literal, etc.) and then uses a set of specially designed heu-
ristics for comparing each pair depending on its value type.  
Each value pair returns a similarity result, which we then use as 
a weight on the value of the matching property. Combining 
these weights we get a total similarity measure between any two 
concepts, without having to rely on the ontological hierarchy. At 
this time, we treat each property as equally important. It is clear 
that establishing a rating of property importance should enhance 

the quality of results. This task is an important item of future 
work in this project. 

Overall, Experiment C uses a three-step procedure:  

1. Learn candidate concept: a set S of property-value pairs  
2. Derive ranked list L of positions for candidate in the ontology 
3. Evaluate quality of the learning process 

3.4 Results and Evaluation 
To evaluate the quality of a newly learned candidate ontological 
concept, we automatically produce a ranked list of concepts that 
can serve as the candidate’s parents or siblings in the ontological 

network and then compare elements of this list to the concept 
(“target concept”) determined by a human judge to be the ap-
propriate parent or sibling of the candidate.  Bernstein [3] 
discusses two distinct methods of calculating similarity of con-
cepts in an ontology: edge-based, and node-based (we will be 

                                                                    

1 At this time, we do not introduce a special naming procedure 
for the new concept candidate; in future, we plan to automate 
the naming policy that is followed by human acquirers of the 
OntoSem ontology. 



using a combination of the two). Edge-based comparison has 
been implemented, for example, in the OntoSearch algorithm 
[27].  OntoSearch calculates a distance value between two con-
cepts in a given ontology by traversing property paths, applying 
a weighted penalty to each crossed path. 

Note, however, that in our case OntoSearch cannot be used ini-
tially as a basis of evaluation, as the candidate concept has – as 

yet – no place in the ontology, thus failing to meet one of the 
basic requirements for OntoSearch’s usage.  In order to identify 
a place in the ontology for the candidate, we carry out a pairwise 
comparison of all values defined in each property of the candi-
date, and all property-value pairs in each concept in the ontol-
ogy; in other words we must do a node-based comparison.  

Once the ranked list of potential attachment-point concepts for a 
candidate concept is produced, we can use OntoSearch to calcu-
late the ontological distance between each member of this list 
and the target concept (see Table 6, column G). This distance is 
used as the measure of the quality of our method of ontological 

concept learning (and, consequently for our approach, learning 
meanings of words unknown to the system).  

The results of a set of 12 runs of Experiment C are presented in 
Table 6.  This table reflects the results of Experiment C only.   

Table 7 shows the combined results of Experiments A and C.  In 
both cases, columns containing results from OntoSearch reflect 
the final similarity distance calculated between the candidate 
and target concepts.  Table 8 suggests two alternate distance 
calculations, using OntoSearch, to those shown in Table 6; col-

umn B presents the results of the OntoSearch calculation when 
including all the attribute/value pairs generated in Experiment 
A, whereas column C presents the results when including only 
the attribute/value pairs who had the highest attributed incidence 
for that value. 

4. Integrating the Three Experiments 
Experiments A and B support Experiment C by providing, re-
spectively an additional and alternative method for generating 
clustered  attribute-value and relation-value pairs.  Integrating 
this data into Experiment C is expected to enhance the learned 
knowledge of the candidate concept.  

4.1. Adding Attributes to Experiment C 

After performing the second step in Experiment C, a ranked list 
of suggested locations in the ontology where the candidate can 
be positioned becomes available. The system can now extract 

known attribute properties (WEIGHT, COLOR, etc.) of the onto-
logical concepts that are selected as parents or sib-
lings of the candidate concept and send them as input 
to the process of Experiment A.  The experimental 
procedure, thus, is augmented as follows:  

1. Learn candidate concept: a set S of property-value 
    pairs 
2. Derive ranked list L of positions for candidate in  
    the ontology 
3. Run Experiment A with elements of L as input 
4. Augment set S using results of Step 3 

5. Derive new list L using the augmented set S 
6. Evaluate quality of the learning process 

As an example, if the existing concept DINOSAUR was 

suggested by the original run of Experiment C as the 
parent of DIPLODOCUS, it is assumed that the defini-
tion of DIPLODOCUS will contain all the attribute-type 
properties that are defined for DINOSAUR (through 
inheritance). Therefore all these attributes will be 
used in a dedicated run of Experiment A. As a result, 
we enhance the inventory of the property values de-
fining the candidate concept with attribute-value 
pairs of the kind: 

<attribute type="HEIGHT" value="(<> 0.019 2.134)"> 
<attribute type="LENGTH" value="(<> 0.025 3.658)"> 

By appending the attribute-value pairs to the existing 
list L of relation-value pairs, we can proceed to the 
evaluation step with a more detailed candidate con-
cept. Table 7 shows the results of integrating Ex-
periment A with Experiment C as described above, 
the modified evaluation is shown in column D. 

4.2 Adding Clustered Results of Ex-

periment A to Experiment C 

The integration method described in the previous 
section does not take advantage of the results of clus-
tering obtainable in Experiment A.  This information 
can be used as a filtering technique when appending 

Table 6: Results of Experiment C on Twelve Unknown Concepts 

Word A B C D E F G 

Brontosaurus DINOSAUR 302 2150 0.373 0.492 9007 0.715 

Cherimoya FRUIT-
FOODSTUFF 

148 895 0.335 0.453 11546 0.637 

Deport BANISH 104
3 

4994 0.409 0.485 12503 0.679 

Depose DEPOSE 54 256 0.479 0.600 11079 0.999 
(ALL) 

Diplodocus DINOSAUR 469 2905 0.500 0.550 2290 0.546 

Obey OBEY 60 397 0.384 0.460 5370 0.518 

Pledge PROMISE 132
3 

5934 0.335 0.436 14097 0.760 

Spartan MILITARY-
ROLE 

426 2201 0.481 0.492 1409 0.754 

Stegosaurus DINOSAUR 415 3306 0.499 0.538 625 0.759 

Syrup PLANT-

DERIVED-
FOODSTUFF 

322 1377 0.423 0.465 2315 0.760 

Triceratops DINOSAUR 84 796 0.482 0.488 588 0.849 

Wigger SOCIAL-
ROLE 

57 233 0.484 0.489 702 0.849 

A: The targeted “correct” concept (existing in the ontology). 

B: The number of clauses extracted containing the search word. 

C: The total number of property/value pairs generated. 

D: The calculated similarity between the candidate and target concept. 

E: The calculated similarity between the candidate and the concept(s) with the 
highest similarity. 

F: The rank of the target, out of approximately 16913, when compared to the 
candidate. 

G: The best distance to the target, using relations only (by OntoSearch compari-
son standards). 

 



attribute-value pairs to the output of Experiment C to improve 
the quality of the candidate concept and to attempt to eliminate 
ambiguity on the basis of empirical data. 

An output from Experiment A could include in the following 
four attribute-value pairs: 

1.  <attribute type="HEIGHT" value="(<> 0.019 2.134)">"> 
2.  <attribute type="HEIGHT" value="(<> 2.743 3.048)"> 

3.  <attribute type="LENGTH" value="(<> 0.025 3.658)"> 
4.  <attribute type="LENGTH" value="(<> 4.572 12.000)"> 

Suppose (1) was extracted from a cluster of size 15, (2) from a 
cluster of size 16, (3) from a cluster of size 36, and (4) from a 
cluster of size 30.  We can use this information to prune the 
data, instead of taking all accounts of the attributes (as suggested 
in the previous section). 

Several methods can be used for suggesting which (if any) clus-
ters should be used; one simple approach would be to select the 
value for the largest cluster within each unique attribute type, 

(this is similar to selecting the first sense of a word in the lexi-
con).  Table 8 shows the results of such a selection, as contrasted 
with results from Table 7, and Table 6. 

 

4.3 Integrating Experiments B and C 

Experiment B focuses on clustering the subjects and objects of 
verbs to produce statistical insight as to the number of unique 

senses of a verb. As Experiment B already uses the case roles 

AGENT and THEME that are among the properties processed in 
Experiment C, the integration of the two experiments is natural. 

The experimental procedure is as follows: 

1. Learn candidate concept: a set S of property-value pairs  
2. Run Experiment B on the same input as Experiment C 
3. Append values of AGENT and THEME from Experiment B to 
    values obtained in Experiment C (adding together occurrence 
    counts for values produced by both procedures) 
4. Derive ranked list L of positions for candidate in the ontology 
5. Evaluate quality of the learning process 

Using the sample data shown Table 4, we can append the fol-
lowing property-value pairs to data already constructed by Ex-
periment C, shown in Table 6, for the word deport: 

1.   <relation type="AGENT" value="NATION"> 

2.   <relation type="AGENT" value="HUMAN"> 
3.   <relation type="AGENT" value="PROCEDURE"> 
4.   <relation type="AGENT" value="ICE"> 

5.   <relation type="AGENT" value="SOCIAL-ROLE"> 
6.   <relation type="THEME" value="HUMAN"> 
7.   <relation type="THEME" value="NATION"> 

8.   <relation type="THEME" value="CITY"> 
9.   <relation type="THEME" value="CITIZEN"> 
10. <relation type="THEME" value="CRIMINAL"> 

The quality of the learning process on the basis of merged data 
from Experiments B and C increased from 0.679 (as reported in 
Table 6), to 0.721. 

5. Discussion and Future Work 
The work described in this paper is viewed as a step in a long-
term program toward automating knowledge acquisition for 
meaning-oriented NLP applications. The overall methodology 
we are following is that of mutual bootstrapping – of the 
learning by the semantic text analysis capability and vice versa. 
We envisage a life-long learning environment in which a) newly 
learned concepts will be added to the ontology, newly learned 

words and phrases, to the lexicon; b) the enhanced ontology and 
lexicon will lead to the better quality TMRs produced by the 
ontological-semantic text analyzer; and c) the better quality 
TMRs will yield better results of the learning process, an early 
configuration of which has been reported in this paper.  

We will continue to seek ways of including knowledge-lean 
(and, therefore, less labor-intensive) methods in the overall 
learning environment. However, the quality of the results of 

Experiments A and B was kept relatively low in a large part 
because we used knowledge-lean methods. In fact, the entire 
field of NLP has been favoring knowledge-lean methods for 
over a decade. This underscores the preference for coverage 
over depth and quality of description of individual language 
phenomena. Still, in a number of applications (e.g., machine 
translation) and tasks (e.g., part of speech tagging) sophisticated 
clustering methods used with large corpora yield acceptable 

results. The task we are pursuing does not seem to us to lend 
itself to solutions based on comparison.  

Indeed, our goal is not to determine that the meaning of lexical 
unit A is closer to that of B than to that of C. It is to specify that 
meaning using an ontological metalanguage of properties and 
thus facilitate not only word sense disambiguation but also, 
using further ontological knowledge, semantic dependency 
determination, high-quality reference resolution and in general 
solutions to all meaning-dependent problems in NLP. At the 

Table 7: Results of Combined Experiments A and C on 

Eleven Unknown Concepts 

Word A B C D 

Brontosaurus DINOSAUR 15 0.607 0.715 

Cherimoya FRUIT-
FOODSTUFF 

17 0.607 0.637 

Depose DEPOSE 9 0.999 
(ALL) 

0.999 
(ALL) 

Diplodocus DINOSAUR 13 0.612 0.546 

Obey OBEY 10 0.518 0.518 

Pledge PROMISE 14 0.516 0.760 

Spartan MILITARY-
ROLE 

17 0.574 0.754 

Stegosaurus DINOSAUR 21 0.720 0.759 

Syrup PLANT-
DERIVED-
FOODSTUFF 

24 0.646 0.760 

Triceratops DINOSAUR 22 0.643 0.849 

Wigger SOCIAL-
ROLE 

8 0.526 0.849 

A: The targeted “correct” concept (existing in ontology).  Re-
peated for clarity. 

B: The total number of attribute/value pairs generated. 

C: The best distance to the target, using attribute and relations 
(by OntoSearch comparison standards).  

D: The best distance to the target, using relations only (by 
OntoSearch comparison standards).  Repeated for clarity. 



same time, we will experiment with other methods of statistical 
data processing after the data is mined from the web, with the 
immediate goal of reducing the quality gap between concepts 
and lexicon entries generated by human acquirers and 
automatically learned ones. In parallel, however, we will be 

looking for realistic knowledge-rich solutions to specific 
problems (e.g., we plan to incorporate our existing module 
processing diathesis transformations in English into Experiment 
B; had this been done already, only one sense of deport would 
be suggested by the system).  

In parallel to work on unsupervised learning, we also plan to 
enhance our existing knowledge acquisition environment 
DEKADE [22][13], to include the option of presenting the 

results of automatic learning to human acquirers. This way we 
expect our work to contribute to the efficiency of human 
knowledge acquisition at an early stage. 
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